|本期目录/Table of Contents|

[1]汪金良,张文海,童长仁.铜闪速炉反应塔内壁挂渣热力学模型探析[J].有色金属科学与工程,2014,(05):23-27.[doi:10.13264/j.cnki.ysjskx.2014.05.004]
 WANG Jinliang,ZHANG Wenhai,TONG Changren.Thermodynamic model of freeze slag inside reaction shaft of copper flash smelting furnace[J].,2014,(05):23-27.[doi:10.13264/j.cnki.ysjskx.2014.05.004]
点击复制

铜闪速炉反应塔内壁挂渣热力学模型探析(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2014年05期
页码:
23-27
栏目:
冶金·材料
出版日期:
2014-10-20

文章信息/Info

Title:
Thermodynamic model of freeze slag inside reaction shaft of copper flash smelting furnace
作者:
汪金良1张文海2童长仁1
1.江西理工大学冶金与化学工程学院,江西赣州341000;2.中国瑞林工程技术有限公司,南昌330002
Author(s):
WANG Jinliang1 ZHANG Wenhai2 TONG Changren1
1. School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology ,Ganzhou 341000,China; 2. China Nerin Engineering Co. Ltd,Nanchang 330002,China
关键词:
铜闪速熔炼反应塔挂渣热力学模型
分类号:
TF801;TF811
DOI:
10.13264/j.cnki.ysjskx.2014.05.004
文献标志码:
A
摘要:
将反应塔挂渣作为闪速熔炼的第四相产物,对铜锍、炉渣、挂渣和烟气四相共存体系,基于最小吉布 斯自由能原理,建立了铜闪速炉反应塔内壁挂渣热力学模型.模拟计算结果表明,当反应塔中存在局部高氧势 时,体系会产生含Fe3O4高的挂渣相,其产出率约为物料量的1.0%;与工业生产实践值相比,挂渣中Fe3O4、 SiO2、FeO、Cu2O含量的相对误差分别为9.24%、9.93%、8.10%和6.73%,说明所建立的闪速炉反应塔内壁 挂渣热力学模型是可行的,为闪速炉内壁挂渣热力学研究奠定了基础.

参考文献/References:

[1] Moskalyk R R, Alfantazi A M. Review of copper pyrometallurgical practice: today and tomorrow[J]. Minerals Engineering, 2003, 16(10): 893-919.
[2] 张文海.闪速熔炼在中国的进展与研究-冷风技术及“非接触冶金”[J].中国有色金属学报, 2004, 14( 1): 63-71.
[3] Merry J, Sarvinis J,Voermann N. Designing modern furnace cooling systems[J]. JOM Journal of the Minerals, Metals and Materials Society, 2000, 52(2): 62-64.
[4] Plikas T,Gunnewiek L,Gerritsen T, et al. The predictive control of furnace tapblock operation using CFD and PCA modeling[J]. JOM Journal of the Minerals, Metals and Materials Society, 2005, 57(10):37-43.
[5] Gunnewiek L,Suer J, Macrosty R,et al Developing a tapblock diagnostic system[C]// Third International Platinum Conference ‘Platinum in Transformation’, The Southern African Institute of Mining and Metallurgy, 2008:203-210.
[6] Li X F, Mei C. Numerical simulation analysis of Guixi copper flash smelting furnace[J]. Rare Metals, 2002, 21(4):260-265.
[7] Chen Z, Mei C, Cen H R, et al. Simulation of moving boundary of the reaction shaft in a flash smelting furnace[J]. Journal of Central South University of Technology, 2001, 8(3): 213-218.
[8] Wang J L, Wang H Q, Tong C R, et al. Simulation of Frozen Slag inside Brickless Reaction Shaft of Flash Smelting Furnace[J]. Metallurgical and Materials Transactions B, 2013,44(6): 1572-1579.
[9] Goto Sakichi. Equilibrium calculations between matte,slag and gaseous phases in copper smelting. In:Jones M J ed. Copper Metallurgy-Practice and Theory[D]. London: Institute of Mining and Metallurgy, 1975:23.
[10] Nobumasa Kemori. The application of equilibrium calculations to a copper flash smelting furnace[J]. Journal of the Ming and Materials Processing Institute of Japan, 1987, 103(5): 21-24.
[11] 黎书华,黄克雄,梅显芝. 贵溪闪速炉铜锍熔炼过程热力学模型[J]. 中南工业大学学报, 1995, 26( 5): 627-631.
[12] Tan P F, Neuschütz D. A thermodynamic model of nickel smelting and direct high-grade nickel matte smelting processes: Part I. Model development and validation[J]. Metallurgical and Materials Transactions B, 2001, 32(2): 341-351.
[13] 谭鹏夫,张传福,李作刚,等. 在铜熔炼过程中第VA族元素分配行为的计算机模型[J]. 中南工业大学学 报, 1996, 26(4): 479-483.
[14] 汪金良,张传福,张文海. 铅闪速熔炼过程的多相平衡模型[J]. 中南大学学报, 2012,43(2): 429-434.
[15] 汪金良,王军. 闪速连续炼铜炉型数值模拟研究[J]. 有色金属科学与工程, 2014, 5(1): 30-36.
[16] 童长仁,吴卫国,周小雪.铜闪速熔炼多相平衡数模的建立与应用[J].有色冶金设计与研究, 2006, 27 (6):6-9.
[17] 陈卓. 铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究[D]. 长沙:中南大学能源科学与 工程学院,2002: 48-54.
[18] Kemori N, Denholm W T, Kurokawa H. Reaction mechanism in a copper flash smelting furnace [J]. Metallurgical and Materials Transactions B, 1989, 20(6): 327-336.
[19] Wang J L, Wu Y X, Liang L W. Evaluation of melting point of the freeze slag in reaction shaft of flash smelting furnace[J]. Advanced Materials Research, 2012, 402: 277-282.
[20] 梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳:东北大学出版社, 1993: 458.
[21] Shimpo R, Watanabe Y, Goto S, et al. An application of equilibrium calculations to the copper smelting operation[C]//Advances in sulfide smelting. Utah: Americal Institute of Mining , Metallurgical and Petroleum Engineers, 1983: 295-316.
[22] 谭鹏夫, 张传福. 铜熔炼过程中伴生元素分配行为的计算机模型[J]. 金属学报, 1997, 33(10): 1094-1100.

相似文献/References:

[1]张兰芝.富氧在国外闪速熔炼的实绩及国内炼铜工艺改造的设想[J].有色金属科学与工程,1988,(01):38.
[2]柴满林.铜闪速熔炼烟灰酸浸渣制备磁性材料[J].有色金属科学与工程,2015,(03):56.[doi:10.13264/j.cnki.ysjskx.2015.03.011]
 CHAI Manlin.TF146.1;TF811[J].,2015,(05):56.[doi:10.13264/j.cnki.ysjskx.2015.03.011]
[3]汪金良,张文海,童长仁.铜闪速炉反应塔内壁挂渣热力学模型初探[J].有色金属科学与工程,2016,(05预):700.
 Wang Jin-liang,Zhang Wen-hai,Tong Chang-ren.Study on the thermodynamic model of freeze slag inside reaction shaft of copper flash smelting furnace[J].,2016,(05):700.

备注/Memo

备注/Memo:
收稿日期:2014-09-04 基金项目:国家自然科学基金资助项目(50904027);江西省自然科学基金项目(2012ZBAB206002);江西省 青年科学家(井冈之星)培养对象计划资助项目(20133BCB23018) 作者简介:汪金良(1976- ),男,博士,副教授,主要从事冶金工艺理论及数模仿真研究,E-mail: simwjl@163.com.
更新日期/Last Update: 2014-10-20