|本期目录/Table of Contents|

[1]刘喜慧,周阳,梁福永,等.钨基催化材料在直接醇类燃料电池中的应用研究[J].有色金属科学与工程,2015,(01):53-58.[doi:10.13264/j.cnki.ysjskx.2015.01.010]
 LIU Xihui,ZHOU Yang,LIANG Fuyong,et al.Application of tungsten-based catalytic materials to direct alcohol fuel cell production[J].,2015,(01):53-58.[doi:10.13264/j.cnki.ysjskx.2015.01.010]
点击复制

钨基催化材料在直接醇类燃料电池中的应用研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2015年01期
页码:
53-58
栏目:
冶金·材料
出版日期:
2015-01-30

文章信息/Info

Title:
Application of tungsten-based catalytic materials to direct alcohol fuel cell production
作者:
刘喜慧周阳梁福永曲慧男温和瑞
江西理工大学冶金与化学工程学院, 江西 赣州 341000
Author(s):
LIU Xihui ZHOU Yang LIANG Fuyong QU Huinan WEN Herui
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
关键词:
直接醇类燃料电池贵金属三氧化钨碳化钨电催化
分类号:
TQ426.8;TM911.4
DOI:
10.13264/j.cnki.ysjskx.2015.01.010
文献标志码:
A
摘要:
直接醇类燃料电池(DAFC)具有能量密度高、携带方便以及环境友好等优点.电极催化剂是改善DAFC性能的关键材料,目前DAFC催化剂要解决的关键问题是提高催化剂的电催化活性、抗CO等中间产物毒化能力以及降低催化剂成本,文中综述了2种钨基催化材料的制备、性能表征及其在DAFC中的应用研究进展,指出了目前钨基复合催化剂需要重点研究的基础问题.

参考文献/References:

[1] 衣宝廉. 燃料电池-原理·技术·应用[M]. 北京:化学工业出版社,2003:1-455.
[2] Ju J F, Shi Y J, Wu D H. TiO2 nanotube supported PdNi catalyst for methanol electro-oxidation[J]. Powder Technology, 2012, 230: 252-256.
[3] Qu W L, Wang Z B, Sui X L, et al. Titanium compounds TiC-C and TiO2-C supported Pd catalysts for formic acid electrooxidation[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15096-15104.
[4] Sandoval-Gonzalez A,Borja-Arco E,Escalante J,et al. Methanol oxidation reaction on PtSnO2 obtained by microwave-assisted chemical reduction[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1752-1759.
[5] Silva D F, Geraldes A N, Neto A O, et al. Preparation of PtSnO2/C electrocatalysts using electron beam irradiation[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2010, 175(3): 261-265.
[6] Justin P, Rao G R, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst[J]. International Journal of Hydrogen Energy,2011, 36(10): 5875-5884.
[7] Shin J K, Jeong S M, Tak Y, et al. Preparation of MoO3/Pt electrodes by electrodeposition for a direct methanol fuel cell[J]. Research on Chemical Intermediates, 2010, 36(6/7): 715-724.
[8] Shen P K, Tseung A C C, Anodic-Oxidation of Methanol on Pt/WO3 in Acidic Media[J]. Journal of the Electrochemical Society, 1994, 141(11): 3082-3090.
[9] Tseung A C C, Chen K Y, Hydrogen spill-over effect on Pt/WO3 anode catalysts[J]. Catalysis Today, 1997, 38(4): 439-443.
[10] Jayaraman S, Jaramillo T F, Baeck S H, et al. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells[J]. Journal of Physical Chemistry B, 2005, 109(48): 22958-22966.
[11] Yang C Z, van der Laak N K, Chan K Y, et al. Microwave-assisted microemulsion synthesis of carbon supported Pt-WO3 nanoparticles as an electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2012, 75: 262-272.
[12] Shim J, Lee C R, Lee H K, et al. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources,2001,102(1/2): 172-177.
[13] Colmenares L, Jusys Z, Kinge S, et al. Synthesis, characterization and electrocatalytic performance of W surface modified, carbon supported Pt anode catalysts for low-temperature fuel cell applications[J]. Journal of New Materials for Electrochemical Systems,2009, 9(2): 107-120.
[14] Yang L X, Bock C, MacDougall B, et al. The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction[J]. Journal of Applied Electrochemistry, 2004, 34(4): 427-438.
[15] Pereira L G S, dos Santos F R, Pereira M E, et al. CO tolerance effects of tungsten-based PEMFC anodes[J]. Electrochimica Acta, 2006, 51(19): 4061-4066.
[16] Gotz M, Wendt H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas[J]. Electrochimica Acta,1998, 43(24): 3637-3644.
[17] Lasch K, Jorissen L, Garche J. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium[J]. Journal of Power Sources,1999, 84(2): 225-230.
[18] Zhou W J, Zhou Z H, Song S Q, et al. Pt based anode catalysts for direct ethanol fuel cells[J]. Applied Catalysis B-Environmental, 2003, 46(2): 273-285.
[19] Zhou Y, Chu Y Q, Liu W M, et al. Nano-WO3 Modified Carbon Nanotube Supported Pt Catalysts and Their Electrocatalytic Activity for Methanol Electro-Oxidation[J]. Acta Physico-Chimica Sinica, 2013, 29(2): 287-292.
[20] Zhou Y C, Liu Y Q. Pt nanoparticles on WO3-modified carbon nanotubes as electrocatalyst for methanol oxidation[J]. Acta Physico-Chimica Sinica,2013, 29: 1487-1493.
[21] Chhina H, Campbell S, Kesler O, High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2008, 179(1): 50-59.
[22] Chhina H, Campbell S, Kesler O, Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs[J]. Journal of the Electrochemical Society, 2007, 154(6): B533-B539.
[23] Zhang J, Tu J P, Du G H, et al. Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2013, 88(1): 107-111.
[24] Cui X Z, Shi J L, Chen H R, et al. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation[J]. Journal of Physical Chemistry B, 2008, 112(38): 12024-12031.
[25] Zhou Y, Hu X, Xiao Y, et al. Platinum nanoparticles supported on hollow mesoporous tungstentrioxide microsphere as electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2013, 111(30): 588-592.
[26] Kelly T G, Chen J G G, Controlling C-O, C-C and C-H bond scission for deoxygenation, reforming, and dehydrogenation of ethanol using metal-modified molybdenum carbide surfaces[J]. Green Chem, 2014, 16(2): 777-784.
[27] Lamic A F, Pham T L H, Potvin C, et al. Kinetics of bifunctional isomerization over carbides (Mo, W)[J]. J Mol Catal a-Chem, 2005, 237(1/2): 109-114.
[28] Sun J, Wang X T, Wang X D, et al. Hydrazine decomposition and CO adsorption microcalorimetry oil tungsten carbide catalysts with different phases[J]. Chinese Journal of Catalysis, 2008, 29 (8): 710-714.
[29] Tomas-Garcia A L,Li Q F,Jensen J O,et al. High Surface Area Tungsten Carbides:Synthesis,Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures[J]. International Journal of Electrochemical Science, 2014, 9(2): 1016-1032.
[30] Levy V, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. science, 1973,181: 547-549.
[31] Hu X C, Chen D, Shi B B, et al. Preparation of tungsten carbide and titania nanocomposite and Its electrocatalytic activity for methanol[J]. Acta Physico-Chimica Sinica, 2011, 27(12): 2863-2871.
[32] Kimmel Y C, Esposito D V, Birkmire R W, et al. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3019-3024.
[33] Yang X F, Kimmel Y C, Fu J, et al. Activation of tungsten carbide catalysts by use of an oxygen plasma pretreatment[J]. Acs Catalysis, 2012, 2(5): 765-769.
[34] Shen P K, Yin S B, Li Z H, et al. Preparation and performance of nanosized tungsten carbides for electrocatalysis[J]. Electrochimica Acta, 2010, 55(27): 7969-7974.
[35] Zhu Q, Zhou S H, Wang X Q, et al. Controlled synthesis of mesoporous carbon modified by tungsten carbides as an improved electrocatalyst support for the oxygen reduction reaction[J]. Journal of Power Sources, 2009, 193(2): 495-500.
[36] Wang R H, Tian C G, Wang L, et al. In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support for DMFC[J]. Chemical Communications, 2009(21): 3104-3106.
[37] Zhao Z Z, Fang X, Li Y L, et al. The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation[J]. Electrochemistry Communications, 2009, 11(2): 290-293.
[38] Gu J, Gao M X, Pan H G, et al. Improved hydrogen storage performance of Ca(BH4)2: a synergetic effect of porous morphology and in situ formed TiO2[J]. Energy & Environmental Science,2013,6(3): 847-858.
[39] Kim J, Jang J H, Lee Y H, et al. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation[J]. Acs Applied Materials & Interfaces, 2013, 5(14): 6571-6579.
[40] Wang Y, Song S Q, Shen P K, et al. Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis[J]. Journal of Materials Chemistry, 2009, 19(34): 6149-6153.
[41] Zhou X S, Qiu Y J, Yu J, et al. Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7398-7404.
[42] Zheng H J, Ma C N, Wang W, et al. Nanorod tungsten carbide thin film and its electrocatalytic activity for nitromethane electroreduction[J]. Electrochemistry Communications, 2006, 8(6): 977-981.
[43] Chen Z Y, Zhao F M, Ma C A, et al. Ultrasonic-assisted preparation of bimodal mesoporous hollow global tungsten carbide and Its electrocatalytic performance[J]. Acta Physico-Chimica Sinica, 2010, 26(9): 2569-2574.
[44] Liu Y, Mustain W E, Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction[J]. Acs Catalysis, 2011, 1(3): 212-220.
[45] Wang Y, Song S Q, Maragou V, et al. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction[J]. Applied Catalysis B-Environmental, 2009, 89(1/2): 223-228.

相似文献/References:

[1]周永益.有色冶金新工艺——熔体熔炼法[J].有色金属科学与工程,1989,(02):57.
[2]占罗林.国际上评价我国的有色冶金工业[J].有色金属科学与工程,1988,(02):70.

备注/Memo

备注/Memo:
收稿日期:2014-06-03 基金项目:江西省赣鄱英才555工程资助项目;国家自然科学基金资助项目(51404110);江西理工大学博士后基金项目;江西理工大学科研基金项目(NSFJ2014-G08) 作者简介:刘喜慧(1989- ),女,硕士研究生,主要从事新能源材料的研究, E-mail:liuxihui89@163.com. 通信作者:温和瑞(1963- ),男,博士,教授,主要从事功能材料化学的研究,E-mail: wenherui63@163.com.
更新日期/Last Update: 2015-01-20