[1] 王积伟, 张培玉, 陈舒, 等. 五种重点关注的重金属废渣的处理方法与利用现状 [J]. 环境工程, 2011(增刊1):212-216.
[2] Wu S M, Xue Y Z, Zhou L M, et al. Structure and morphology evolution in mechanochemical processed CuInS2 powder[J]. Journal of Alloys and Compounds, 2014, 600: 96-100.
[3] Lu S, Huang J, Peng Z, et al. Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations[J]. Chemical Engineering Journal, 2012, 195/196: 62-68.
[4] Stellacci P, Liberti L, Notarnicola M, et al. Valorization of coal fly ash by mechano-chemical activation: Part I. Enhancing adsorption capacity[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 11-8.
[5] Stellacci P, Liberti L, Notarnicola M, et al. Valorization of coal fly ash by mechano-chemical activation: Part II. Enhancing pozzolanic reactivity[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 19-24.
[6] Setoudeh N, Welham N J. Ball milling induced reduction of SrSO4 by Al[J]. International Journal of Mineral Processing, 2011, 98(3/4): 214-8.
[7] Takacs L. Self-sustaining reactions induced by ball milling[J]. Progress in Materials Science, 2002, 47(4): 355-414.
[8] Calos N J, Forrester J S, Schaffer G B. A crystallographic contribution to the mechanism of a mechanically induced solid state reaction[J]. Journal of Solid State Chemistry, 1996, 122(2): 273-280.
[9] Zhang W, Huang J, Yu G, et al. Mechanochemical destruction of Dechlorane Plus with calcium oxide[J]. Chemosphere, 2010, 81(3): 345-350.
[10] Nomura Y, Fujiwara K, Terada A, et al. Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO[J]. Chemosphere, 2012, 86(3): 228-234.
[11] Inoue T, Miyazaki M, Kamitani M, et al. Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH[J]. Advanced Powder Technology, 2005, 16(1): 27-34.
[12] Li M G, Sun C J, Gau SH, et al. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 586-691.
[13] Chai L Y, Liang Y J, Ke Y, et al. Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1129-1138.
[14] Ke Y, Chai L Y, Liang Y J, et al. Sulfidation of heavy-metal-containing metallurgical residue in wet-milling processing[J]. Minerals Engineering, 2013, 53:136-143.
[15] Montinaro S, Concas A, Pisu M, et al. Remediation of heavy metals contaminated soils by ball milling[J]. Chemosphere, 2007, 67(4): 631-639.
[16] Montinaro S, Concas A, Pisu M, et al. Immobilization of heavy metals in contaminated soils through ball milling with and without additives[J]. Chemical Engineering Journal, 2008, 142(3): 271-284.
[17] Montinaro S, Concas A, Pisu M, et al. Rationale of lead immobilization by ball milling in synthetic soils and remediation of heavy metals contaminated tailings[J]. Chemical Engineering Journal, 2009, 155(1/2): 123-131.
[18] Palaniandy S, Azizli K A M, Hussin H, et al. Study on mechanochemical effect of silica for short grinding period[J]. International Journal of Mineral Processing, 2007, 82(4): 195-202.
[19] Kowalski K P, S Gard E G. Implementation of zero-valent iron (ZVI) into drinking water supply - Role of the ZVI and biological processes[J]. Chemosphere, 2014, 117: 108-114.
[20] Chang G D, Chen T, Liu H, et al. A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2014, 244: 264-272.
[21] Wan J, Pressigout J, Simon S, et al. Distribution of As trapping along a ZVI/sand bed reactor[J]. Chemical Engineering Journal, 2014, 246: 322-327.
[22] US A. Environment protection agency office of solid waste[J]. Hazardous Waste Characteristics Scoping Study, 1996(3):1-3.
[23] Nemati K, Abubakar N K, Sobhanzadeh E, et al. A modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge[J]. Microchemical Journal, 2009, 92(2): 165-174.
[24] Naseri E, Reyhanitabar A, Oustan S, et al. Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology[J]. Geoderma, 2014, 232/234: 547-555.
[25] Song S, Lopez V A, Hernandez-Campos D J, et al. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 2006, 40(2): 364-372.
[26] Liu R P, Sun L H, Qu J H, et al. Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents[J]. Desalination, 2009, 249(3): 1233-1240.
[27] Streat M, Hellgardt K, Newton N L R. Hydrous ferric oxide as an adsorbent in water treatment: Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions[J]. Process Safety and Environmental Protection, 2008, 86(1): 21-30.
[28] Nasiri T B, Honarmandi P, Ebrahimi K R, et al. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method[J]. Materials Letters, 2009, 63(5): 543-549.
[29] Kuziora P, Wyszynska M, Polanski M, et al. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9883-9890.
[30] Sun F, Osseo A K A, Chen Y, et al. Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI[J]. Journal of Hazardous Materials, 2011, 196: 311-318.
[31] Triszcz J M, Porta A, Einschlag F S G. Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal[J]. Chemical Engineering Journal, 2009, 150(2/3): 431-440.
[32] Ye M, Huang J, Chen R, et al. Removeal of arsenic(III) from water by using a new class of zero-valent iron modified mesoporous silica molecular sieves SBA-15[J]. Advanced Materials Research, 2012, 356:423-432.