|本期目录/Table of Contents|

[1]何洪波,薛霜霜,余长林*.钨基半导体光催化剂研究进展[J].有色金属科学与工程,2016,(05预):245-249.
 HE Hong-bo,XUE Shuang-shuang,YU Chang-lin*.Recent development of W-based semiconductor photocatalyts[J].,2016,(05预):245-249.
点击复制

钨基半导体光催化剂研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2016年05期预
页码:
245-249
栏目:
出版日期:
2016-10-31

文章信息/Info

Title:
Recent development of W-based semiconductor photocatalyts
作者:
何洪波薛霜霜余长林*
(江西理工大学冶金与化学工程学院,江西赣州,341000)
Author(s):
HE Hong-bo XUE Shuang-shuang YU Chang-lin*
(School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Jiangxi,Ganzhou 341000, China)
关键词:
钨基半导体光催化剂可见光光催化性能研究进展
分类号:
O 643
DOI:
-
文献标志码:
A
摘要:
钨基半导体材料作为光催化剂通常具有较小禁带宽度,能吸收可见光,可表现较好的光催化活性,近年来引起了人们的广泛关注。另外它们的结构、形貌和比表面积可以根据不同的合成方法进行调控。本文较全面阐述了近年来发展的氧化钨、钨酸盐、掺杂钨酸盐、以及复合钨酸盐等典型钨基半导体光催化材料研究进展。着重从光催化原理、形貌控制、比表面积及能隙调节等方面分析了结构和光催化性能的关系,并在此基础上对钨基半导体光催化剂的发展和研究方向进行了展望。

参考文献/References:

[1] 陈建钗, 薛霜霜, 余长林. 稀土在非TiO2光催化剂的改性研究[J]. 有色金属科学与工程, 2015, 6(1): 99-105.
[2] 罗仙平, 杨晶, 王春英, 等. P25 TiO2 光催化降解中低浓度氨氮废水[J]. 有色金属科学与工程, 2015, 6(3): 100-104.
[3] 余长林, 操芳芳, 李鑫. 纳米BiOI的稳定性、结构及光催化性能研究[J]. 有色金属科学与工程, 2011, 2(4): 86-91.
[4] 余长林, 杨凯. 异质结构的复合光催化材料的研究新进展[J]. 有色金属科学与工程, 2010, 1(2): 16-21.
[5] Zong X, Han J F, Ma G J. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation[J]. Journal of Physical Chemistry C,2011, 115: 12202-12208.
[6] Bloh J Z, Folli A, Macphee D E. Adjusting nitrogen doping level in titanium dioxide by codoping with tungsten: Properties and band structure of the resulting materials[J]. Journal of Physical Chemistry C, 2014, 118: 21281-21292.
[7] Yu C L, Wei L F, Li X, et al. Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation [J]. Materials Science and Engineering, 2013, 178: 344-348.
[8] Guo Y F, Quan X, Lu N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environmental Science and Technology, 2007, 41: 4422-4427.
[9] 何剑, 蔡启舟, 肖枫, 等. 微弧氧化法制备 WO3/TiO2 复合薄膜的结构及光催化性能[J]. 催化学报, 2009, 30(11): 1137-1142.
[10] Yan Y, Wu Y, Yan Y, et al. Inorganic-salt-assisted morphological evolution and visible-light-driven photocatalytic performance of Bi2WO6 nanostructures[J]. Journal of Physical Chemistry C, 2013, 117(39): 20017-20028.
[11] Xu Q C, Wellia D V., Ng Y H. Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances[J]. Journal of Physical Chemistry C, 2011, 115: 7419-7428.
[12] Ge M, Li Y, Liu L, et al. Bi2O3-Bi2WO6 composite microspheres: Hydrothermal synthesis and photocatalytic performances[J]. Journal of Physical Chemistry C, 2011, 115: 5220-5225.
[13] Yu C L, Cao F F, Li X, et al. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation[J]. Chemical Engineering Journal , 2013, 219: 86-95.
[14] Yu C L, Yu J C. Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO4 nanorod catalyst[J]. Materials Science and Engineering B, 2009, 164: 16-22.
[15] Huang H W, Liu K, Chen K,et al.Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation[J]. Journal of Physical Chemistry C, 2014, 118: 14379-14387.
[16] Jiang H Y, Liu J J, Cheng, K et al. Enhanced visible light photocatalysis of Bi2O3 upon fluorination[J]. Journal of Physical Chemistry C, 2013, 117: 20029-20036.
[17] 宗 恺, 汪 浩, 刘晶冰, 等. 石墨烯在光催化反应中应用的研究进展[J]. 化工进展, 2010, 31(12): 2736-2742.
[18] 魏龙福, 余长林. 石墨烯/半导体复合光催化剂的研究进展[J]. 有色金属科学与工程, 2013, 4(3): 34-39.
[19] Yu J G, Qi L F, Cheng B, et al. Effect of calcination temperatures on microstructures and photocatalytic activity of Tungsten Trioxide hollow microspheres[J]. Journal of Hazardous materials, 2008, 160: 621-628.
[20] Martínez D S, Cruz A M l, Cuéllar E L. Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of Urea as complexing agent[J]. Applied Catalysis A : General, 2011, 398: 179-186.
[21] 尹 莉, 陈德良, 李 涛, 等.贵金属/WO3复合纳米晶的气敏与光催化研究进展[J]. 化工进展, 2012, 31(1): 133-143.
[22] Jung J M, Wang M, Kim E J, et al. Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering[J]. Applied Catalysis B : Environment, 2008, 84(3): 389-392.
[23] Choi H W, Kim E J, Hahn S H.Photocatalytic activity of Au-buffered WO3 thin films prepared by RF magnetron sputtering[J]. Chemical Engineering Journal, 2010, 161(1-2): 285-288.
[24] Sun S M, Wang W Z, Zeng S Z, et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. Journal of Hazardous materials, 2010, 178(1): 427-433.
[25] Kim J, Lee C W, Choi W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light[J]. Environmental Science and Technology, 2010, 44(17): 6849-6854.
[26] Arai T, Horiguchi M, Yanagida M, et al. Complete oxidation of acetaldehyde and toluene over a Pd/WO3 photocatalyst under fluorescent or visible-light irradiation[J]. Chemistry Communications, 2008, (43): 5565-5567.
[27] Iliev V, Tomova D, Bilyarska L, et al. Influence of the sze of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid[J]. Journal of Molecular Catalysis A : Chemical, 2007, 263(1-2): 32-38.
[28] Chen Z, Wang W, Zhu K G. Controllable synthesis of WO3 nanowires by electrospinning and their photocatalytic properties under visible light irradiation[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 1-6.
[29] Chen P, Zhu L Y, Fang S H, et al. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light[J]. Environmental Science and Technology, 2012, 46 (4): 2345-2351.
[30] Li P, Zhao X, Jia C J, et al. ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match [J]. Journal of Materials Chemistry, 2013, 1(10): 3421-3429.
[31] Yu C L, Cao F F, Li X, et al. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation[J]. Chemical Engineering Journal, 2013, 219: 86-95.
[32] Hill J C, Choi K S. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation[J]. Journal of Materials Chemistry A, 2013, 1(16): 5006-5014.
[33] Bai X, Wang L, Zhu Y. Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization[J]. ACS Catalysis, 2012, 2(12): 2769-2778.
[34] Cui Y, Li H, Hong W, et al. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6 powder[J]. Powder Technology, 2013, 247: 151-160.
[35] Zhou Y X, Yao H B, Zhang Q, et al. Hierarchical FeWO4 microcrystals: Solvothermal synthesis and their photocatalytic and magnetic properties[J]. Inorganic Chemistry, 2009, 48: 1082-1090.
[36] Tong W M, Li L P, Hu W B, et al. Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity[J]. Journal of Physical Chemistry C, 2010, 114: 1512-1519.
[37] Sadiq M M J, Nesaraj A S. Soft chemical synthesis and characterization of BaWO4 anoparticles for photocatalytic removal of rhodamine B present in water sample[J].Journal Nanostructured Chemistry, 2014, 5(1): 45-54.
[38] Farsi H, Barzgari Z, Askari S Z. Sunlight-induced photocatalytic activity of nanostructured calcium tungstate for methylene blue degradation[J]. Research on Chemical Intermediates, 2015, 41(8): 5463-5474.
[39] Zhang L X, Wang Y J, Cheng H Y, et al. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts[J]. Advanced Materials, 2009, 21, 1286-1290.
[40] Cheng H F, Huang B B, Liu Y Y. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol[J]. Chemistry Communications, 2012, 48: 9729-9731.
[41] Lin H, Tan G Q, Zhang W, et al. Microwave-assisted hydrothermal preparation, characterization and photocatalytic properties of a chrysanthemum-shaped ZnWO4 photocatalyst[J].Journal Cluster Science, 2013, 24: 315-325.
[42] Huang Y, Ai Z H, Ho W K, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and Their visible-light-induced photocatalytic removal of NO[J]. Journal of Physical Chemistry C, 2010, 114(14): 6342-6349.
[43] 朱振峰, 于红光, 李军奇, 等. 无助剂一步合成巢状钨酸铋微球及其光催化性能的研究[J]. 功能材料, 2012, 4(43): 409-416.
[44] Zhou Y X, Tong L, Chen X B, et al. Ethylene glycol-assisted solvothermal fabrication of ZnWO4 nanostructures with tunable size, optical properties, and photocatalytic activities[J]. Applied Physics A, 2014, 117: 673-679.
[45] Li Y Y, Liu J P, Huang X T, et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J]. Crystal Growth and Design, 2007, 7(7): 1350-1355.
[46] 黄毅, 吴季怀, 黄妙良, 等. 表面活性剂对水热制备钨酸铋形貌及光催化性能的影响[J].中国科学: 化学, 2011, 41(1): 44-50.
[47] Low J, Yu J, Li Q, et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene Co-modified Bi2WO6 nanosheets[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1111-1120.
[48] Guo L, Wang D J, Fu F, et al.Synthesis of Ag, Pd-loaded Bi2WO6 and its photocatalytic activities[J]. Journal of Advanced Materials, 2012, 518: 833-836.
[49] 刘守新, 刘鸿. 光催化及光电催化基础与应用[M]. 北京: 化学工业出版社, 85-86.
[50] Su Y G, Zhu B L, Guan K, et al.Particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties[J]. Journal of Physical Chemistry C, 2012, 116: 18508-18517.
[51] Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J]. Environmental Science and Technology, 2008, 42(6): 2085-2091.
[52] Huang G L, Zhu Y F. Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping[J]. Journal of Physical Chemistry C, 2007, 111: 11952-11958.
[53] 张立武, 朱永法. 钨钼酸盐复合氧化物新型可见光光催化研究[J]. 中国材料进展, 2010, 29(1): 45-53.
[54] Tang B L, Jiang G H, Wei Z, et al. Preparation of N-doped Bi2WO6 microspheres for efficient visible light-induced photocatalysis[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 124-130.
[55] Wang C Y, Zhu L Y, Chang C, et al. Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and its photocatalytic degradation of bisphenol A[J]. Chemistry Communications, 2013, 37: 92-95.
[56] Chaiwichian S, Inceesungvorn B, Wetchakun K, et al. Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts[J]. Materials Research Bulletin, 2014, 54: 28-33.
[57] Chen L, Hua H, Yang Q, et al. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets[J]. Applied Surface Science, 2015, 327: 62-67.
[58] Xu J, Wang W, Sun S, et al. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2[J]. Applied Catalysis B: Environment, 2012, 111: 126-132.
[59] El-Sheikh S M, Rashad M M. Novel synthesis of cobalt nickel tungstate nanopowders and its photocatalytic application[J]. Journal Cluster Science, 2015, 26(3): 743-757.
[60] Bai X J, Wang L, Zhu Y F.Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization[J]. ACS Catalysis, 2012, 2: 2769-2778.
[61] 余长林, 杨凯, Yu J C, 等.水热合成Bi2WO6/ZnO异质结构型光催化剂及其光催化性质[J]. 无机材料学报, 2011, 25: 1157-1163.
[62] Zhang C L, Zhang H L, Zhang K Y, et al. Photocatalytic activity of ZnWO4: Band structure, morphology and surface modification [J]. ACS Applied Materials Interfaces, 2014, 6(16): 14423-14432.
[63] Bera S, Rawal S B, Kim H J. Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis[J]. ACS Apply Materials Interfaces, 2014,6: 9654-9663.
[64] Huang G L, Zhang C, Zhu Y F. ZnWO4 photocatalyst with high activity for degradation of organic contaminants[J], Journal of Alloys and Compounds, 2007, 432: 269-276.
[65] Lin Z Y, Li J L, Zheng Z Q, et al. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis[J], ACS Nano, 2015, 9(7): 7256-7265.

相似文献/References:

[1]白 羽,吴 榛,刘仁月,等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程,2016,(05预):90.
[2]白羽,吴榛,刘仁月,等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程,2016,(02):60.[doi:10.13264/j.cnki.ysjskx.2016.02.011]
 BAI Yu,WU Zhen,LIU Renyue,et al.Synthesis, characterization offlower-like Pt/Bi2WO6 microcrystals and high visible lightphotocatalytic performance[J].,2016,(05预):60.[doi:10.13264/j.cnki.ysjskx.2016.02.011]
[3]曾德彬,杨凯,李笑笑,等.Ag2CO3@AgBr复合光催化剂的制备、表征及其可见光催化性能[J].有色金属科学与工程,2018,(01):51.[doi:10.13264/j.cnki.ysjskx.2018.01.009]
 ZENG Debin,YANG Kai,LI Xiaoxiao,et al.Synthesis and characterization of core-shell like Ag2CO3@AgBr composite photocatalyst and its high visible light photocatalytic performance[J].,2018,(05预):51.[doi:10.13264/j.cnki.ysjskx.2018.01.009]
[4]张振民,贾静雯,张梦凡,等.双钙钛矿光催化剂材料研究进展[J].有色金属科学与工程,2020,(04):14.[doi:10.13264/j.cnki.ysjskx.2020.04.003]
 ZHANG Zhenmin,JIA Jingwen,ZHANG Mengfan,et al.Research progress of double perovskite photocatalyst materials[J].,2020,(05预):14.[doi:10.13264/j.cnki.ysjskx.2020.04.003]
[5]何洪波,薛霜霜,余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程,2015,(05):32.[doi:10.13264/j.cnki.ysjskx.2015.05.007]
 HE Hongbo,XUE Shuangshuang,YU Changlin.Recent development of W-based semiconductor photocatalyts[J].,2015,(05预):32.[doi:10.13264/j.cnki.ysjskx.2015.05.007]

备注/Memo

备注/Memo:
收稿日期: 修改稿日期
更新日期/Last Update: 2016-03-29