|本期目录/Table of Contents|

[1]刘仁月,吴榛,白羽,等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程,2016,(06):62-72.[doi:10.13264/j.cnki.ysjskx.2016.06.011]
 LIU Renyue,WU Zhen,BAI Yu,et al.Research progress of microsphere photocatalysts in environment purification and energy conversion[J].,2016,(06):62-72.[doi:10.13264/j.cnki.ysjskx.2016.06.011]
点击复制

微米球光催化剂在环境净化及能源转化的研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2016年06期
页码:
62-72
栏目:
出版日期:
2016-12-31

文章信息/Info

Title:
Research progress of microsphere photocatalysts in environment purification and energy conversion
作者:
刘仁月1吴榛1白羽1余长林12
1.江西理工大学冶金与化学工程学院,江西 赣州341000;2.福州大学光催化研究所,能源环境光催化国家重点实验室,福州350002
Author(s):
LIU Renyue1 WU Zhen1 BAI Yu1 YU Changlin12
1. School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2. Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
关键词:
微球光催化剂光催化性能环境净化能源转化
分类号:
O644;X703
DOI:
10.13264/j.cnki.ysjskx.2016.06.011
文献标志码:
A
摘要:
光催化在污染物降解及能源转化应用方面前景宽广.然而,大部分光催化剂因本身物理结构的缺陷而难以广泛运用.微米球光催化剂具有显著的优点,如低密度、高光捕获能力和载流子分离效率、优异的电子和光学性能、高比表面积、易回收、优良的传递性能和表面渗透能力. 这些结构有利于提高光催化性能和实际运用,因而受到广泛关注. 重点介绍并讨论一些典型的微球光催化剂(TiO2, ZnO, Bi2WO6, PbWO4,BiFeO3, BiOX(X= Cl, Br, I)等)的制备及这类光催化剂在环境净化和能源转化方面的研究进展,并展望微米球光催化剂的发展方向.

参考文献/References:

[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
[2] UDDIN M T, BABOT O, THOMAS L, et al. New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecom position[J]. Journal of Physical Chemistry C, 2015, 119(13):7006-7015.
[3] ZHOU X M, LIU G, YU J G, et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. Journal of Materials Chemistry, 2012, 22(40): 21337-21354.
[4] ZHANG J Y, WANG Y H, ZHANG J, et al. Enhanced photocatatytic hydrogen production activities of Au-loaded ZnS flowers[J]. ACS Applied Materials and Interfaces, 2013, 5(3): 1031-1037.
[5] ZHOU X, LI X, GAO Q, et al. Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation[J]. Catalysis Science and Technology, 2015, 5(5): 2798-2806.
[6] YUAN Y P, RUAN L W, BARBER J, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion[J]. Energy and Environmental Science, 2014, 7(12): 3934-3951.
[7] 薛霜霜, 何洪波, 余长林. 稀土上转换用于提高半导体化合物光催化效率的研究进展[J]. 有色金属科学与工程, 2015, 6(4): 97-103.
[8] 何洪波, 薛霜霜, 余长林. 钨基半导体光催化剂研究进展[J]. 有色金属科学与工程, 2015, 6(5): 32-39.
[9] 陈建钗, 薛霜霜, 余长林. 稀土在非TiO2光催化剂的改性研究[J]. 有色金属科学与工程, 2015, 6(1): 99-105.
[10] 魏龙福, 余长林, 陈建钗, 等. 水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J]. 有色金属科学与工程, 2014, 5(1): 47-53.
[11] 魏龙福,余长林. 石墨烯/半导体复合光催化剂的研究进展[J]. 有色金属科学与工程, 2013, 4(3): 34-39.
[12] LIU H, YU C L, WANG C. Economics and its implication of photocatalyst recycling for water purification, handbook of photocatalysts: preparation, structure and applications[M]. New york: Nova Science Publishers, 2009.
[13] GR?魧TZEL M . Dye-sensitized solarcells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2), 145-153.
[14] YU C L, YU J C, CHAN M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres[J]. Journal of Solid State Chemistry, 2009, 182(5): 1061-1069.
[15] YU J C, YU J G, ZHANG L Z, et al. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders[J]. Journal of Photochemistry and Photobiology A: (Chemistry), 2002, 148(1): 263-271.
[16] LI X Z, LIU H, CHENG L F, et al. Photocatalytic oxidation using a new catalytic TiO2 microspherefor water and wastewater treatment[J]. Environmental Science and Technology, 2003, 37(17): 3989-3994.
[17] SONG C Y, YU W J, ZHAO B, et al. Efficient fabrication and photocatalytic properties of TiO2 hollow spheres[J]. Catalysis Communications, 2009, 10(5): 650-654.
[18] HU X Y, ZHANG T C, JIN Z, et al. Single-crystalline anatase TiO2 dous assembled micro-sphere and their photocatalytic activity[J]. Crystal Growth and Design, 2009, 9(5): 2324-2328.
[19] ZHENG Z K, HUANG B B, QIN X Y, et al. Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2010, 16(37): 11266-11270.
[20] KONG L N, WANG C H, ZHENG H, et al. Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis[J]. Journal of Physical Chemistry C, 2015, 119(29): 16623-16632.
[21] CHEN Y F, HUANG W X, HE D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials and Interfaces, 2014, 6(16): 14405-14414.
[22] LI X Y, LIU D P, SONG S Y, et al. Fe3O4@SiO2@TiO2@Pt hierarchical core-shell microspheres: controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle[J]. Crystal Growth and Design, 2014, 14(11): 5506-5511.
[23] XU H, ZHENG Z, ZHANG L Z, et al. Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity[J]. Journal of Solid State Chemistry, 2008, 181(9): 2516-2522.
[24] FEI H L, LIU Y P, LI Y P, et al. Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity[J]. Microporous and Mesoporous Materials, 2007, 102(1): 318-324.
[25] YU J C. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity[J]. Chemical Communications, 2006 (10): 1115-1117.
[26] YU C L, ZHOU W Q, YANG K, et al. Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic activity[J]. Journal of Materials Science, 2010, 45(21): 5756-5761.
[27] XIE J M, JIANG D L, CHEN M, et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity[J]. Colloids and Surfaces A: (Physicochemical and Engineering Aspects), 2010, 372(1): 107-114.
[28] LI G, LIU F, ZHANG Z. Enhanced photocatalytic activity of silica-embedded TiO2 hollow microspheres prepared by one-pot approach[J]. Journal of Alloys and Compounds, 2010, 493(1): 1-7.
[29] LU X J, HUANG F Q, WU J J, et al. Intelligent hydrated-sulfate template assisted preparation of nanoporous TiO2 spheres and their visible-light application[J]. ACS Applied Materials and Interfaces, 2011, 3(2): 566-572.
[30] CAI J B, WU X Q, LI S X, et al. Synergistic effect of double-shelled and sandwiched TiO2@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity[J]. ACS Applied Materials and Interfaces, 2015, 7(6): 3764-3772.
[31] CONG Y, LI X K, DONG Z J, et al. Core-shell structured carbon black@TiO2 microsphere with enhanced visible light photocatalytic activity[J]. Materials Letters, 2015, 138: 200-203.
[32] DINH C T, YEN H, KLEITZ F, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International Edition, 2014, 53(26): 6618-6623.
[33] YU C L, CAO F F, LI X, et al. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation[J]. Chemical Engineering Journal, 2013, 219: 86-95.
[34] YU C L, YANG K, XIE Y, et al. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability[J]. Nanoscale, 2013, 5(5): 2142-2151.
[35] YU C L, CAO F F, LI G, et al. Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation[J]. Separation and Purification Technology, 2013, 120: 110-122.
[36] YU C L, FAN C F, YU J C, et al. Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J]. Materials Research Bulletin, 2011, 46(1): 140-146.
[37] LI W, JIA X K, LI P T, et al. Hollow mesoporous SiO2-BiOBr nanophotocatalyst: synthesis, characterization and application in photodegradation of organic dyes under visible-light irradiation[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(6): 1101-1110.
[38] XIA J X, YIN S, LI H M, et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid[J]. Langmuir, 2011, 27(3): 1200-1206.
[39] ZHANG D Q, WEN M C, JIANG B, et al. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J]. Journal of Hazardous Materials, 2012, 211: 104-111.
[40] DING L Y, WEI R J, CHEN H, et al. Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness[J]. Applied Catalysis B: (Environmental), 2015, 172: 91-99.
[41] DI J, XIA J X, GE Y P, et al. Reactable ionic liquid-assisted rapid synthesis of BiOI hollow microspheres at room temperature with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2014, 2(38): 15864-15874.
[42] PAN M L, ZHANG H J, GAO G D, et al. Facet-dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A[J]. Environmental Science and Technology, 2015, 49(10): 6240-6248.
[43] DI J, XIA J X, GE Y P, et al. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight[J]. Applied Catalysis B: (Environmental), 2015, 168: 51-61.
[44] HUO Y N, MIAO M, ZHANG Y, et al, Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability[J]. Chemical Communications, 2011, 47(7): 2089-2091.
[45] XU Y S, ZHANG W D. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance[J]. Dalton Transactions, 2013, 42(4): 1094-1101.
[46] NAKAJIMA A, KOBAYASHI T, ISOBE T, et al. Preparation and visible-light photocatalytic activity of Au-supported porous CeO2 spherical particles using templating[J]. Materials Letters, 2011, 65(19): 3051-3054.
[47] FENG L L, ZHANG C L, GAO G, et al. Facile synthesis of hollow Cu2O octahedral and spherical nanocrystals and their morphology dependent photocatalytic properties[J]. Nanoscale Research Letters, 2012, 7(1): 1-10.
[48] LU W W, GAO S Y, WANG J J. One-Pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance[J]. Journal of Physical Chemistry C, 2008, 112(43): 16792-16800.
[49] WANG W S, ZHEN L, XU C Y, et al. Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core-shell microspheres[J]. Crystal Growth and Design, 2009, 9(3): 1558-1568.
[50] ZHANG L S, WANG W Z, ZHOU L, et al. Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities[J]. Small, 2007, 3(9): 1618-1625.
[51] YU J G, QI L F, CHENG B, et al. Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres[J]. Journal of Hazardous Materials , 2008, 16(2): 621-628.
[52] ZHANG X, AI Z H, JIA F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C, 2008, 112(3): 747-753.
[53] DI J, XIA J X, YIN S, et al. One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties[J]. RSC Advances, 2014, 4(27) : 14281-14290.
[54] DI J, XIA J X, YIN S, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants[J]. Journal of Materials Chemistry A, 2014, 2(15): 5340-5351.
[55] DI J, XIA J X, GE Y P, et al. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres[J]. Dalton Transactions, 2014, 43(41): 15429-15438.
[56] JIAO H P, YU X, LIU Z Q, et al. One-pot synthesis of heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic performance[J]. RSC Advances, 2015, 5(21): 16239-16249.
[57] GUO X J, ZHEN M M, LIU H J, et al. BiOBr-BiOI microsphere assembled with atomthick ultrathin nanosheets and its high photocatalytic activity[J]. RSC Advances, 2015, 5(31): 24777-24782.
[58] GIRIJA K, THIRUMALAIRAJAN S, MASTELARO V R, et al. Photocatalytic degradation of organic pollutants by shape selective synthesis of ?茁-Ga2O3 microspheres constituted by nanospheres for environmental remediation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2617-2627.
[59] XIA W W, MEI C, ZENG X H, et al. Nanoplate-built ZnO hollow microspheres decorated with gold nanoparticles and their enhanced photocatalytic and gas-sensing properties[J]. ACS Applied Materials and Interfaces, 2015, 7(22): 11824-11832.
[60] YUE L F, WANG S F, SHAN G Q, et al. Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water[J]. Applied Catalysis B: (Environmental), 2015, 176: 11-19.
[61] FAN H M, WANG D J, LIU Z P, et al. Self-assembled BiVO4/Bi2WO6 microspheres: synthesis, photoinduced charge transfer properties and photocatalytic activities[J]. Dalton Transactions, 2015, 44(26): 11725-11731.
[62] LOU S Y, JIA X B, WANG Y Q, et al. Template-assisted in situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst[J]. Applied Catalysis B: (Environmental), 2015, 176: 586-593.
[63] GUO F, SHI W L, LIN X, et al. Novel BiVO4/InVO4 heterojunctions: Facile synthesis and efficient visible-light photocatalytic performance for the degradation of rhodamine B[J]. Separation and Purification Technology, 2015, 141: 246-255.
[64] ZHONG J S, WANG Q Y, CHEN D Q, et al. Biomolecule-assisted solvothermal synthesis of 3D hierarchical Cu2FeSnS4 microspheres with enhanced photocatalytic activity[J]. Applied Surface Science, 2015, 343: 28-32.
[65] LIU D, WANG J, ZHANG M, et al. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphereviaa phase junction[J]. Nanoscale, 2014, 6(24): 15222-15227.
[66] JIANG G H, WANG R J, WANG X H, et al.Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating[J]. ACS Applied Materials and Interfaces, 2012, 4(9): 4440-4444.
[67] LIU X W, FANG Z, ZHANG X J, et al. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts[J]. Crystal Growth and Design , 2009, 9(1): 197-202.
[68] LI X N, HUANG R K, HU Y H, et al. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance[J]. Inorganic Chemistry, 2012, 51(11): 6245-6250.
[69] MURUGANANDHAM M, KUSUMOTO Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst[J]. Journal of Physical Chemistry C, 2009, 113(36): 16144-16150.
[70] DONG F, SUN Y J, FU M, et al. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst[J]. Langmuir, 2012, 28(1): 766-773.
[71] DONG F, LI Q Y, SUN Y J, et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catalysis, 2014, 4(12): 4341-4350.
[72] CHEN Z X, LI D Z, ZHANG W J, et al. Low-temperature and template-free synthesis of ZnIn2S4 microspheres[J]. Inorganic Chemistry, 2008, 47(21): 9766-9772.
[73] RENGARAJ S, VENKATARAJ S, TAI C W, et al. Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity[J]. Langmuir, 2011, 27(9): 5534-5541.
[74] ZHANG J, ELSANOUSI A, LIN J, et al. Aerosol-assisted self-assembly of aluminum borate (Al18B4O33) nanowires into three dimensional hollow spherical architectures[J]. Crystal Growth and Design, 2007, 7(12): 2764-2767.
[75] AI Z H, ZHANG L Z, LEE S C. Efficient visible light photocatalytic oxidation of NO on aerosol flow-synthesized nanocrystalline InVO4 hollow microspheres[J]. Journal of Physical Chemistry C, 2010, 114(43): 18594-18600.
[76] HUANG Y, AI Z H, HO W K, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light -induced photocatalytic removal of NO[J]. Journal of Physical Chemistry C, 2010, 114(14): 6342-6349.
[77] DONG F, XIONG T, SUN Y J, et al. Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)2CO3 microspheres[J]. Journal of Materials Chemistry A, 2015, 3(36): 18466-18474.
[78] LIU G, PAN J, YIN L C, et al. Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J]. Advanced Functional Materials, 2012, 22(15): 3233-3238.
[79] MA Y, WANG X, JIA Y, X. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043.
[80] BACHMEIER A, WANG C, WOOLERTON T W, et al. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction[J]. Journal of the American Chemical Society, 2013, 135(40): 15026-15032.
[81] PROTTI S, ALBINI A, SERPONE N. Photocatalytic generation of solar fuels from the reduction of H2O and CO2: A look at the patent literature[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19790-19827.
[82] PARIDA K. Facile fabrication of S-TiO2/β-SiC nanocomposite photocatalyst for hydrogen evolution under visible light irradiation[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(2): 245-253.
[83] ZHOU W, LI W, WANG J Q, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst[J]. Journal of the American Chemical Society, 2014, 136(26): 9280-9283.
[84] YAN K, WU G S. Titanium dioxide microsphere-derived materials for solar fuel hydrogen generation[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(5): 779-791.
[85] ZHENG Z K, HUANG B B, LU J B, et al. Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity[J]. Chemistry-A European Journal, 2011, 17(52): 15032-15038.
[86] CHENG H F, HUANG B B, LIU Y Y, et al. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol[J]. Chemical Communications, 2012, 48(78): 9729-9731.
[87] YAN K, WU G S, JARVIS C, et al. Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production[J]. Applied Catalysis B: (Environmental), 2014, 148: 281-287.
[88] WEI P, LIU J W, LI Z H. Effect of Pt loading and calcination temperature on the photocatalytic hydrogen production activity of TiO2 microspheres[J]. Ceramics International, 2013, 39(5): 5387-5391.
[89] ZHENG L, XU Y, SONG Y, et al. Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light[J]. Inorganic Chemistry, 2009, 48(9): 4003-4009.
[90] SHEN S H, ZHAO L, ZHOU Z H, et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation[J]. Journal of Physical Chemistry C, 2008, 112(41): 16148-16155.
[91] LIU Q, WU D, ZHOU Y, et al. Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane[J]. ACS Applied Materials and Interfaces, 2014, 6(4): 2356-2361.
[92] FANG B Z, BONAKDARPOUR A, REILLY K, et al. Large-Scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4[J]. ACS Applied Materials and Interfaces, 2014, 6(17): 15488-15498.
[93] SHI F F, CHEN L L, XING C S, et al. ZnS microsphere/g-C3N4 nanocomposite photocatalyst with greatly enhanced visible light performance for hydrogen evolution: synthesis and synergistic mechanism study[J]. RSC Advances, 2014, 4(107): 62223-62229.
[94] WU T T, XIE Y P, YIN L C, et al. Witching photocatalytic H2 and O2 generation preferences of rutile TiO2 microspheres with dominant reactive facets by boron doping[J]. Journal of Physical Chemistry C, 2015, 119(1): 84-89.
[95] GUA Q, LIAO Y S, YIN L S, et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability[J]. Applied Catalysis B: (Environmental), 2015, 165: 503-510.
[96] WANG S B, HOU Y D, WANG X C. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light[J]. ACS Applied Materials and Interfaces, 2015, 7(7): 4327-4335.
[97] LI H, ZHANG X, CUI X. A facile and waste-free strategy to fabricate Pt-C/TiO2 microspheres: Enhanced photocatalytic performance for hydrogen evolution[J]. International Journal of Photoenergy, 2014, 2014: 1-9.
[98] LIU B, LIU L M, LANG X F, et al. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production[J]. Energy and Environmental Science, 2014, 7(8): 2592-2597.

相似文献/References:

[1]薛霜霜,何洪波,余长林.稀土上转换用于提高半导体化合物光催化效率的研究进展[J].有色金属科学与工程,2015,(04):97.[doi:10.13264/j.cnki.ysjskx.2015.04.020]
 XUE Shuangshuang,HE Hongbo,YU Changlin.Research progress of rare earth upconversion used for improving the photocatalytic efficiency of semiconductor compounds[J].,2015,(06):97.[doi:10.13264/j.cnki.ysjskx.2015.04.020]
[2]罗序燕,黄瑞宇,赵东方,等.现代仪器分析在钛系光催化剂中的应用[J].有色金属科学与工程,2015,(06):137.[doi:10.13264/j.cnki.ysjskx.2015.06.025]
 LUO Xuyan,HUANG Ruiyu,ZHAO Dongfang,et al.Application of modern instrument analysis in the titanium photocatalyst[J].,2015,(06):137.[doi:10.13264/j.cnki.ysjskx.2015.06.025]
[3]黄瑞宇,罗序燕,赵东方,等.银掺杂二氧化钛及其光催化性能研究[J].有色金属科学与工程,2016,(05预):125.
 Huang Rui-yu Luo Xu-yan Zhao Dong-fang Deng Jin-mei Zhu Ting.Preparation and photocatalytic properties of Ag doped TiO2[J].,2016,(06):125.
[4]黄瑞宇,罗序燕,赵东方,等.银掺杂二氧化钛及其光催化性能研究[J].有色金属科学与工程,2016,(02):67.[doi:10.13264/j.cnki.ysjskx.2016.02.012]
 HUANG Ruiyu,LUO Xuyan,ZHAO Dongfang,et al.Preparation and photocatalytic properties of Ag doped TiO2[J].,2016,(06):67.[doi:10.13264/j.cnki.ysjskx.2016.02.012]
[5]曾青云,曾繁钢,郭守金,等.微波水热法制备Co掺杂的LaFeO3及其光催化性能研究[J].有色金属科学与工程,2018,(03预):6.
[6]曾青云,曾繁钢,郭守金,等.微波水热法制备Co掺杂的LaFeO3及其光催化性能研究[J].有色金属科学与工程,2018,(03):90.[doi:10.13264/j.cnki.ysjskx.2018.03.015]
 ZENG Qingyun,ZENG Fangang,GUOShoujin,et al.Preparation by Microwave Hydrothermal Method and Photocatalytic Activity of Co Doped LaFeO3[J].,2018,(06):90.[doi:10.13264/j.cnki.ysjskx.2018.03.015]
[7]刘仁月,吴 榛,白羽,等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程,2016,(06预):41.
 LIU Renyue,WU Zhen,BAI Yu,et al.Recent research developement of microsphere photocatalysts in Environment purification and energy coversion[J].,2016,(06):41.

备注/Memo

备注/Memo:
收稿日期:2016-03-30基金项目:国家自然科学基金资助项目(21567008,21263005);江西省教育厅高等学校科技落地计划项目(KJLD14046)通信作者:余长林(1974- ),男,教授,主要从事纳米催化材料与光催化技术及其应用等方面的研究,E-mail: yuchanglinjx@163.com.
更新日期/Last Update: 2016-12-15