|本期目录/Table of Contents|

[1]王起a,b,焦树强b,等.纳米非晶Si2N2O粉末的SPS烧结及烧结体性能研究[J].有色金属科学与工程,2017,(05):58-63.[doi:10.13264/j.cnki.ysjskx.2017.05.008]
 WANG Qia,b,JIAO Shuqiangb,et al.SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J].,2017,(05):58-63.[doi:10.13264/j.cnki.ysjskx.2017.05.008]
点击复制

纳米非晶Si2N2O粉末的SPS烧结及烧结体性能研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2017年05期
页码:
58-63
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks
作者:
王起ab焦树强b朱鸿民b赵世强b
北京科技大学, a.冶金与生态工程学院;b.钢铁冶金新技术国家重点实验室,北京100083
Author(s):
WANG Qiab JIAO Shuqiangb ZHU Hongminb ZHAO Shiqiangb
a. School of Metallurgical and Ecological Engineering; b. State Key Lab of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
关键词:
液氨 纳米 非晶Si2N2O粉末放电等离子体烧结
分类号:
TQ175.7;TF123.7
DOI:
10.13264/j.cnki.ysjskx.2017.05.008
文献标志码:
A
摘要:
通过低温还原,以Si2OCl6为原料,以Na溶液为还原剂,在液氨溶液中成功合成了纳米非晶态Si2N2O粉末. 在 不加任何烧结助剂的条件下,通过放电等离子体烧结,得到了致密的陶瓷块体. 制得的纳米非晶粉末颗粒尺寸约为20 nm,XRD 结果显示样品在1 100 ℃开始晶化. 进一步考察了不同烧结温度下陶瓷的抗氧化性和力学性能,致密块体在1 600 ℃ 下经过20 h氧化后,其增重仅有1.1 %,烧结块体的力学性能随着烧结温度的增加而迅速增加,当烧结温度高于 1 500 ℃时,继续增加烧结温度力学性能的增加趋势变得平缓. 1 500 ℃烧结样品的维氏硬度、强度和断裂韧性分别达 到了19.6 GPa,440 MPa和4.1 MPa·m1/2.

参考文献/References:

[1] WANG E, CHEN J, HU X, et al. New perspectives on the gas–solid reaction of α-Si3N4 powder in wet air at high temperature[J]. Journal of the American Ceramic Society, 2016, 99(8):2699-2705.
[2] SEIFERT M, MOTZ G. Synthesis and high-temperature oxidation of a polymer-derived Mo-SiN based ceramic composite[J]. Journal of the European Ceramic Society, 2016, 36(15):3601-3606.
[3] 段生朝, 麻建军, 郭汉杰,等. 硅粉直接氮化反应热力学分析及动力学机理研究[J]. 有色金属科学与工程, 2016, 7(4):14-21.
[4] 章杨荣, 陈颢, 熊伟. AlCrN/硅系陶瓷在大气、海水环境下的摩擦学性能[J]. 有色金属科学与工程, 2017,8 (1):99-104.
[5] WAN P, TIAN Z, LUO Y, et al. Accurate exploration of the intrinsic lattice thermal conductivity of Si2N2O by combined theoretical and experimental investigations[J]. Journal of the American Ceramic Society, 2016, 99(3):988-995.
[6] LIN S, YE F, DING J, et al. Effects of pore diameters on phase, oxidation resistance, and thermal shock resistance of the porous Si2N2O ceramics[J]. Journal of the American Ceramic Society, 2017, 5(1):62-69.
[7] RUBIN A E.Sinoite (Si2N2O): Crystallization from EL chondrite impact melts[J]. American Mineralogist, 2015, 82(9/10):1001-1006.
[8] MIYAZAKI H, OKADA K, JINNO K, et al. Fabrication of radiative cooling devices using Si2N2O nano- particles[J].Journal of the Ceramic Society of Japan, 2016, 124(11):1185-1187.
[9] 张勤俭, 赵路明, 刘敏之,等. 刀具涂层技术的研究现状和发展趋势[J]. 有色金属科学与工程, 2014,5(2):20-25.
[10] DONG X, LIU J, DU H, et al. Microstructure characterization of in situ synthesized porous Si2N2O ceramics using spodumene additive[J]. Ceramics International, 2013, 39(4):4657-4662.
[11] 张贺佳, 陈礼清, 王文广,等. 超细晶WC-10Co硬质合金制备的主要影响因素[J]. 有色金属科学与工程, 2014,5 (6):47-52.
[12] TONG Q, ZHOU Y, ZHANG J, et al. Preparation and properties of machinable Si2N2O /BN composites[J]. International Journal of Applied Ceramic Technology, 2008, 5(3):295-304.
[13] XIE R J, MITOMO M, XU F F, et al. Microstructure and mechanical properties of superplastically deformed silicon nitride-silicon oxynitride in situ composites[J]. Journal of the European Ceramic Society, 2002, 22(6):963-971.
[14] RADWAN M, KASHIWAGI T, MIYAMOTO Y. New synthesis route for Si2N2O ceramics based on desert sand [J]. Journal of the European Ceramic Society, 2003, 23(13):2337-2341.
[15] EMOTO H, MITOMO M, WANG C M, et al. Fabrication of silicon nitride–silicon oxynitride in-situ composites[J]. Journal of the European Ceramic Society, 1998, 18(5):527-533.
[16] HUANG Z K, GREIL P, PETZOW G. Formation of silicon oxynitride from Si3N4 and SiO2 in the presence of A12O3[J]. Ceramics International, 1984, 10(1):14-17.
[17] OHASHI M, TABATA H, KANZAKI S. High-temperature flexural strength of hot-pressed silicon oxynitride ceramics[J]. Journal of Materials Science Letters, 1988, 7(4):339-340.
[18] LARKER R. Reaction sintering and properties of silicon oxynitride densified by hot isostatic Pressing[J]. Cheminform, 1992, 23(14):62-66.
[19] YANG M, WANG Q, LV M, et al. Synthesis and sintering of silicon nitride nano-powders via sodium reduction in liquid ammonia[J]. Journal of the European Ceramic Society, 2016, 36(8):1899-1904.
[20] YUAN B, YANG M, ZHU H. Titanium nitride nanopowders produced via sodium reductionin liquid ammonia[J]. Journal of Materials Research, 2009, 24(2):448-451.
[21] ZHU H, SADOWAY D R. Synthesis of nanoscale particles of Ta and Nb3Al by homogeneous reduction in liquid ammonia[J]. Journal of Materials Research, 2001, 16(9):2544-2549.
[22] DEGENHARDT U, STEGNER F, LIEBSCHER C, et al. Sintered silicon nitride/nano-silicon carbide materials based on preceramic polymers and ceramic powder[J]. Journal of the European Ceramic Society, 2012, 32(9):1893-1899.
[23] GHADERI M, RAZAVI R S, LOGHMAN-ESTARKI M R, et al. Spark plasma sintering of transparent Y2O3, ceramic using hydrothermal synthesized nanopowders[J]. Ceramics International, 2016, 42(13):14403- 14410.
[24] MILLOT N, GALLET S L, AYMES D, et al. Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis[J]. Journal of the European Ceramic Society, 2007, 27(2/3):921-926.
[25] 朱诗秀. 纳米钨粉生产工艺研究[J]. 有色金属科学与工程, 2012, 3(3):36-39.
[26] EVANS A G. Fracture mechanics of ceramics[M]. Springer: Plenum Press, 1978.
[27] CLARKE D R, LANGE F F. Oxidation of Si3N4 alloys: Relation to phase equilibria in the system Si3N4 ‐SiO2‐MgO[J]. Journal of the American Ceramic Society, 1980, 63(9/10):586-593.

相似文献/References:

[1]潘显桢.钨冶炼中的液氨槽罐[J].有色金属科学与工程,1990,(04):17.
[2]张小增,巢志聪,扶雄辉,等.水溶性NaYF4: Yb, Er上转换发光纳米粒子的可控合成与发光性能研究[J].有色金属科学与工程,2016,(05预):55.
 School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou 000,et al.Controllable synthesis of watersoluble NaYF4: Yb, Er upconversion nanoparticles and luminescent property study[J].,2016,(05):55.
[3]张小增,巢志聪,扶雄辉,等.水溶性NaYF4: Yb, Er上转换发光纳米粒子的可控合成与发光性能研究[J].有色金属科学与工程,2016,(03):59.[doi:10.13264/j.cnki.ysjskx.2016.03.011]
 ZHANG Xiaozeng,CHAO Zhicong,FU Xionghui,et al.Controllable synthesis of water-soluble NaYF4: Yb, Er upconversion nano-particles and their luminescent properties[J].,2016,(05):59.[doi:10.13264/j.cnki.ysjskx.2016.03.011]

备注/Memo

备注/Memo:
收稿日期:2017-04-21
基金项目:国家高技术研究发展计划(2012AA062302);国家自然科学基金优秀青年基金资助项目(51322402)
通信作者:王起(1989- ),男,博士研究生,主要从事氮化硅基陶瓷的制备及相关性能等方面的研究, E-mail: wangqi_1016@163.com.
更新日期/Last Update: 2017-10-20