[1] 戴永年, 杨斌, 姚耀春,等. 锂离子电池的发展状况[J]. 电池, 2005, 35(3):193-195.
[2] 钟盛文, 钟风娣, 张骞. 锂离子正极材料LiNi0.5Mn0.3Co0.2O2的合成与掺杂Al的性能研究[J]. 有色金属科学与工程, 2013,4(4):11-16.
[3] 梅佳, 钟盛文, 张骞,等. 高性能LiCoO2的制备与性能表征[J]. 电源技术, 2007, 31(2):128-130.
[4] SOLOVEICHIK G L. Battery technologies for large-scale stationary energy storage[J]. Annual Review of Chemical &Biomolecular Engineering, 2011, 2(2):503-27.
[5] 黄峰, 周运鸿. 锂离子电池电解质现状与发展[J]. 电池, 2001, 31(6):32-35.
[6] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2015, 22(3):587-603.
[7] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium super ionic conductor[J]. Nature Materials, 2011, 10(9):682.
[8] ANANTHARAMULU N, RAO K K, RAMBABU G, et al. A wide-ranging review on Nasicon-type materials[J]. Journal of Materials Science, 2011, 46(9):2821-2837.
[9] 刘玉龙, 张鸿, 薛丹,等. Li1.3Al0.3Ti1.7(PO4)3基锂离子导电材料的制备与表征[J]. 中国有色金属学报, 2012, 22(1):144-149.
[10] KOTOBUKI M, KOISHI M. Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3, solid electrolyte[J]. Ceramics International, 2015, 41(7):8562-8567.
[11] LI Y T, LIU M J, LIU K A, et al. High Li + conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature[J]. Journal of Power Sources, 2013, 240(240):50-53.
[12] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14/15/16):911-916.
[13] 郑子山, 张中太, 唐子龙,等. 锂无机固体电解质[J]. 化学进展, 2003, 15(2):101-106.
[14] RUFFO R, MARI C M, CATTI M. Structural and electrical characterization of the NASICON-type Li2FeZr(PO4)3, and Li2FeTi(PO4)3compounds[J]. Ionics, 2001, 7(1/2):105-108.
[15] LEE S D, JUNG K N, KIM H, et al. Composite electrolyte for all-solid-State lithium batteries: low-temperature fabrication and conductivity enhancement[J]. Chemsuschem, 2017, 10(10):2175.
[16] XIE H, GOOGENOUGH J B, LI Y. Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Li-ion solid electrolyte[J]. Journal of Power Sources, 2011, 196(18):7760-7762.
[17] KALI R, MUKHOPADHYAY A. Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective[J]. Journal of Power Sources, 2014, 45(4):920-931.
[18] CHANG C M, HONG S H, PARK H M. Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes[J]. Solid State Ionics, 2005, 176(35):2583-2587.
[19] CHANG C M, LEE Y I, SEONG-HYEON H0NG, et al. Spark plasma sintering of LiTi2(PO4)3 -based solid electrolytes[J]. Journal of the American Ceramic Society, 2005, 88(7):1803–1807.
[20] KUMAR S, BALAYA P. Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3[J]. Solid State Ionics, 2016, 296:1-6.
[1]钟盛文*.,黄冰..锂过量对钙钛矿型Li3/8Sr7/16Ta3/4Hf1/4O3固体电解质性能的影响[J].有色金属科学与工程,2017,(01预):72.
ZHONG Shengwen*.HUANG Bing..Effects of excess lithium salt on the properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3[J].,2017,(01):72.
[2]钟盛文,黄冰.锂过量对钙钛矿型Li3/8Sr7/16Ta3/4Hf1/4O3固体电解质性能的影响[J].有色金属科学与工程,2017,(01):70.[doi:10.13264/j.cnki.ysjskx.2017.01.012]
ZHONG Shengwen,HUANG Bing.Effects of excess lithium salt on properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3[J].,2017,(01):70.[doi:10.13264/j.cnki.ysjskx.2017.01.012]
[3]罗江斌,李婷婷,游维雄,等.热压烧结制备Li3/8Sr7/16Ta3/4Hf1/4O3钙钛矿型固体电解质[J].有色金属科学与工程,2018,(04):66.
LUO Jiangbin,LI Tingting,YOU Weixiong,et al.Synthesis of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3 by hot-pressing sintering[J].,2018,(01):66.