|本期目录/Table of Contents|

[1]王井井a,黄元春a,刘宇b,等.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J].有色金属科学与工程,2018,(02):47-55.[doi:10.13264/j.cnki.ysjskx.2018.02.009]
 WANG Jingjinga,HUANG Yuanchuna,LIU Yub,et al.Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J].,2018,(02):47-55.[doi:10.13264/j.cnki.ysjskx.2018.02.009]
点击复制

时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2018年02期
页码:
47-55
栏目:
出版日期:
2018-05-21

文章信息/Info

Title:
Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy
作者:
王井井a黄元春a刘宇b许天成a
中南大学,a.轻合金研究院;b.机电工程学院,长沙 410083
Author(s):
WANG Jingjinga HUANG Yuanchuna LIU Yub XU Tianchenga
a.Light Alloys Research Institute;b.College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
关键词:
Al-Zn-Mg-Cu-Zr-Er铝合金时效工艺微观组织耐腐蚀性
分类号:
TG146
DOI:
10.13264/j.cnki.ysjskx.2018.02.009
文献标志码:
A
摘要:
采用剥落腐蚀、极化曲线、电导率、力学性能测试和TEM显微组织分析,研究T6、T74及 RRA时效工艺对Al-Zn-Mg-Cu-Zr-Er 铝合金的组织、力学性能与耐腐蚀性的影响.结果表明:①T6态合金的强韧性最高(σb:663.5 MPa、σ0.2:625.4 MPa、δ:12.46 %),但易腐蚀;与T6态合金相比,T74态合金(σb:640.2 MPa、σ0.2:621.3 MPa、δ:11.34 %)的耐腐蚀性最好,但以牺牲强度为代价,而RRA态合金(σb:657.8 MPa、σ0.2:628.8 MPa、δ:11.98 %)虽强韧性略低于T6 态合金,但耐腐蚀性明显改善,综合性能优异.②合金的强度及耐腐蚀性分别与晶内η′析出相和晶界η析出相有关.晶内大量的η′析出相分布越均匀、弥散,尺寸越细小,合金的强度越高;晶界粗大的η析出相分布越离散,合金的耐腐蚀性越好.这与第一性原理计算的η′相与η相的理化性质相吻合.

参考文献/References:

[1] 赵少奎. 导弹与航天技术导论[M]. 北京:中国宇航出版社, 2008.
[2] LUKASAK D A, HART R M. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age, 1991,49(9):11-15.
[3] 刘显东, 王祝堂. 解读航空航天7×××系铝合金材料的状态[J]. 轻合金加工技术, 2011,39(5):26-28.
[4] 曾渝, 尹志民, 潘青林, 等. 超高强铝合金的研究现状及发展趋势[J]. 中南大学学报(自然科学版), 2002,33(6):592-596.
[5] 李海. Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究[D]. 长沙:中南大学, 2005.
[6] ZHANG Z, CHEN K H, FANG H C, et al. Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5):1037-1042.
[7] FANG H C, CHEN K H, CHEN X, et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science & Engineering A, 2011,528(25/26):7606-7615.
[8] SANCTIS M D. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition[J]. Materials Science & Engineering A, 1991,141(1):103-121.
[9] MACASLILL I A, LADEPHA A D P, MILLIGAN J H, et al. Effects of cold and hot densification on the mechanical properties of a 7XXX series powder metallurgy alloy[J]. Powder Metallurgy, 2009,52(4):304-310.
[10] 李杰华. 铝合金熔体旋转喷吹除气净化技术的研究[D]. 西安:西北工业大学, 2006.
[11] DONG X, HUANG X, LIU L, et al. A liquid aluminum alloy electromagnetic transport process for high pressure die casting[J]. Journal of Materials Processing Technology, 2016,234:217-227.
[12] CHEN K H, HUANG L P, HU H W, et al. Effect of ultrasonic melt pretreatment on structure and properties of high strength 7055 aluminum alloy[J]. Journal of Central South University of Technology, 2005,36(3):354-357.
[13] 王东, 马宗义. 轧制工艺对7050铝合金显微组织和力学性能的影响[J]. 金属学报, 2008,44(1):49-54.
[14] LI J P, SHEN J, YAN X D, et al. Recrystallization behavior of 7050 aluminum alloy during multi-pass hot compression process[J]. Chinese Journal of Nonferrous Metals, 2009,19(10):1754-1758.
[15] ROBSON J D, PRANGNELL P B. Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J]. Metal Science Journal, 2013,18(6):607-614.
[16] MONDAL C, MUKHOPADHYAY A K, RAGHU T, et al. Tensile properties of peak aged 7055 aluminum alloy extrusions[J]. Materials Science & Engineering A, 2007,454(25):673-678.
[17] 李俊鹏, 沈健, 闫晓东. 温度对7075铝合金热变形显微组织演化的影响[J]. 中国有色金属学报, 2008,18(11):1951-1957.
[18] 陈康华, 刘红卫, 刘允中. 强化固溶对7055铝合金力学性能和断裂行为的影响[J]. 中南大学学报(自然科学版), 2000,31(6):528-531.
[19] 陈康华, 张茁, 刘红卫, 等. 近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J]. 中南大学学报(自然科学版), 2003,34(2):114-118.
[20] JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering A, 2014,605:167-175.
[21] 李杰. 热处理对7055合金组织和性能的影响[D]. 长沙:中南大学, 2005.
[22] 郑子樵, 李红英, 莫志民. 一种7055型铝合金的RRA处理[J]. 中国有色金属学报, 2001,11(5):771-776.
[23] 李鑫. 7055铝合金RRA处理的非等温晶界η相粗化动力学行为研究[D]. 长沙:中南大学, 2013.
[24] 张艳秋. 7A09铝合金复杂盘饼类锻件缺陷形成机理及组织性能控制[D]. 哈尔滨:哈尔滨工业大学, 2008.
[25] BAI S, LIU Z, LI Y, et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science & Engineering A, 2010,527(7/8):1806-1814.
[26] SENKOV O N, SHAGIEV M R, SENKOVA S V, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008,56(15):3723-3738.
[27] 曾渝. 超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D]. 长沙:中南大学, 2004.
[28] LI G F, ZHANG X M, LI P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050[J]. Transactions of Nonferrous Metals Society of China, 2010,20(6):935-941.
[29] PARK J K. Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6[J]. Materials Science & Engineering A, 1988,103(2):223-231.
[30] WILLIAMS J C, JR E A S. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003,51(19):5775-5799.
[31] PARK J K, ARDELL A J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metallurgical Transactions A, 1983,14(10):1957-1965.
[32] CHEN S, CHEN K, PENG G, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials & Design, 2012,35:93-98.
[33] KANNO M, ARAKI I, CUI Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J]. Metal Science Journal, 1994,10(7):599-603.
[34] MAHATHANINWONG N, PLOOKPHOL T, WANNASIN J, et al. T6 heat treatment of rheocasting 7075 Al alloy[J]. Materials Science & Engineering A, 2012,532:91-99.
[35] 黄元春, 肖政兵, 张欢欢, 等. 平衡相对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr铝合金性能影响:第一性原理研究[J]. 航空材料学报, 2014,34(3):28-34.
[36] 陈军洲. AA 7055铝合金的时效析出行为与力学性能[D]. 哈尔滨:哈尔滨工业大学, 2008.
[37] WEN K, FAN Y, WANG G, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Materials & Design, 2016,101:16-23.
[38] WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007,49(3):1437-1449.
[39] 黄元春, 刘宇, 肖政兵, 等. 时效处理对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr合金超声铸锭轧件组织与抗腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2015(2):280-287.

相似文献/References:

[1]王井井a,黄元春a,刘宇b,等.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性的影响[J].有色金属科学与工程,2018,(02预):66.
 WANG Jingjinga,HUANG Yuanchuna,LIU Yub,et al.Influence of aging treatment on microstructure and corrosion properties of the Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J].,2018,(02):66.

备注/Memo

备注/Memo:
收稿日期:2017-11-30
基金项目:国家重点基础研究发展“973”计划项目(2014CB046702);中南大学中央高校基本科研业务费专项资金资助(2017zzts664)
通信作者:黄元春(1966- ),男,教授,博导,主要从事变形铝合金、镁合金等新材料的研究与开发,熔体净化、高纯均质铸造及热处理工艺等关键技术的研究工作,E-mail:science@csu.edu.cn.
更新日期/Last Update: 2018-04-20