|本期目录/Table of Contents|

[1]李莹a,黄元春b*,任贤魏b,等.预时效制度对6016铝合金机械性能和析出相的影响[J].有色金属科学与工程,2018,(04):40-46,101.
 LI Yinga,HUANG Yuanchunb*,REN Xianweib,et al.Effect of pre-aging treatment on mechanical properties and precipitation of 6016 alloy[J].,2018,(04):40-46,101.
点击复制

预时效制度对6016铝合金机械性能和析出相的影响(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2018年04期
页码:
40-46,101
栏目:
出版日期:
2018-08-25

文章信息/Info

Title:
Effect of pre-aging treatment on mechanical properties and precipitation of 6016 alloy
作者:
李莹a黄元春b* 任贤魏b王也君b
中南大学, a.材料科学与工程学院; b.轻合金研究院, 长沙410083
Author(s):
LI Yinga HUANG Yuanchunb* REN Xianweib WANG Yejunb
a School of MaterialsScience and Engineering, Central South University, Changsha 410083; b Light Alloys Research Institute, Central South University, Changsha 410083
关键词:
6016合金 预时效 第一性原理计算 机械性能 微观组织
分类号:
TG156.1;TF125.22
DOI:
-
文献标志码:
A
摘要:
通过第一性原理计算、硬度测试、拉伸测试、X射线衍射(XRD)以及透射电镜(TEM)等手段研究了预时效处理对6016合金机械性能以及析出行为的影响. 研究表明: 预时效处理能够抑制自然时效的负作用, 其中110℃×10min预时效处理能够显著抑制板材的自然时效, 使板材保持良好的成形性(σ0.2: 109.65MPa); 预时效能够提高烤漆强化效应, 110℃×10min预时效处理的烤漆性能最优(σ0.2:212.29MPa), 且随着预时效时间的增加和温度的升高, 烤漆强化效应降低; 不同预时效处理并不能改变基体中相的成分, 主要为α-Al和Mg2Si两种相,且随时间的增加和温度的升高, Mg2Si相略微增多; 预时效处理后的试样在烤漆之后有更多针状的β"相析出且机械性能更好, 这与第一性原理计算的β序列的理化性质相符合.

参考文献/References:


[1] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering A. 2000, 280(1): 37-49.
[2] DING L, JIA Z, LIU Y, et al. The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al-Mg-Si alloys[J]. Journal of Alloys & Compounds. 2016, 688: 362-367.
[3] MAN J, JING L, JIE S G. The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy[J]. Journal of Alloys & Compounds. 2007, 437(1): 146-150.
[4] LIANG W J, ROMETSCH P A, CAO L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu[J]. Corrosion Science. 2013, 76(10): 119-128.
[5] YAMADA K, SATO T, KAMIO A. Effects of Quenching Conditions on Two-Step Aging Behavior of Al-Mg-Si Alloys[J]. Materials Science Forum. 2000, 331-337: 669-674.
[6] R?YSET J, STENE T, S?TER J A, et al. The Effect of Intermediate Storage Temperature and Time on the Age Hardening Response of Al-Mg-Si Alloys[J]. Materials Science Forum. 2006, 519: 239-244.
[7] MARTINSEN F A, EHLERS F J H, TORS?TER M, et al. Reversal of the negative natural aging effect in Al–Mg–Si alloys[J]. Acta Materialia. 2012, 60(17): 6091-6101.
[8] CHANG C S, WIELER I, WANDERKA N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy.[J]. Ultramicroscopy. 2009, 109(5): 585-592.
[9] 宋满新,邓运来,陈龙,等. Ge对汽车车身板用Al-Mg-Si系铝合金组织和性能的影响[J]. 热加工工艺. 2014(6): 76-80.
[10] RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates[J]. Acta Materialia. 2004, 52(14): 4213-4227.
[11] TORS?TER M, LEFEBVRE W, MARIOARA C D, et al. Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys[J]. Scripta Materialia. 2011, 64(9): 817-820.
[12] ARUGA Y, KOZUKA M, TAKAKI Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy[J]. Scripta Materialia. 2016, 116: 82-86.
[13] ARUGA Y, KOZUKA M, TAKAKI Y, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al–Mg–Si alloy[J]. Materials Science & Engineering A. 2015, 631: 86-96.
[14] TAKAKI Y, MASUDA T, KOBAYASHI E, et al. Effects of Natural Aging on Bake Hardening Behavior of Al-Mg-Si Alloys with Multi-Step Aging Process[J]. Materials Transactions. 2014, 55(8): 1257-1265.
[15] 纪艳丽,郭富安,潘琰峰,等. 预时效制度对Al-Mg-Si-Cu合金组织与性能的影响[J]. 材料热处理学报. 2010(02): 85-89.
[16] 郭富安,曹零勇. 《材料热处理学报》2017年征订启事[J]. 金属热处理. 2016(10): 20.
[17] 徐芬,王晶莉,张宗鹏,等. 预应变与预时效对6101导电铝合金组织与性能的影响[J]. 有色金属科学与工程. 2016, 7(1): 34-40.
[18] 任玉艳,刘桐宇,李英民. Mg_2Si金属间化合物的结构稳定性,热力学和力学性能的第一性原理计算[J]. 中国科学:物理学力学天文学. 2016, 46(8): 84611.
[19] MATSUDA K, SAKAGUCHI Y, MIYATA Y, et al. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy[J]. Journal of Materials Science. 2000, 35(1): 179-189.
[20] VISSERS R, HUIS M A V, JANSEN J, et al. The crystal structure of the β′ phase in Al–Mg–Si alloys[J]. Acta Materialia. 2007, 55(11): 3815-3823.
[21] RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates[J]. Acta Materialia. 2004, 52(14): 4213-4227.
[22] JACOBS M H. The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy[J]. Philosophical Magazine. 1972, 26(1): 1-13.
[23] BAI X, JIA-HAO L I, DAI Y, et al. Linear correlations of formation enthalpies/bulk modules and atomic volumes observed in Pt-Zr compounds by ab initio calculation[J]. 中国有色金属学报(英文版). 2013, 23(12): 3704-3713.
[24] 王战华. 固溶和时效对三种Mg-GD-Y合金组织与性能的影响[D]. 西安工业大学, 2015.
[25] MIAO W F, LAUGHLIN D E. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022[J]. Metallurgical & Materials Transactions A. 2000, 31(2): 361-371.
[26] HIRTH S M, MARSHALL G J, COURT S A, et al. Effect of Si on the Aging Behaviour and Formability of Alloys Based on AA6016[J]. Materials Science & Engineering A. 2001, s 319–321(12): 452-456.
[27] YAMADA K, SATO T, KAMIO A. Effects of Quenching Conditions on Two-Step Aging Behavior of Al-Mg-Si Alloys[J]. Materials Science Forum. 2000, 331-337: 669-674.
[28] BIROL Y. Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy[J]. Materials Science and Engineering: A. 2005, 391(1-2): 175-180.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-5-16
基金项目:国家重点基础研究发展“973”计划项目(2014CB046702). *
通信作者:黄元春(1966-),男,博导,教授,主要从事变形铝合金、镁合金等新材料的研究与开发,熔体净化、高纯均质铸造及热处理工艺等关键技术的研究工作. E-mail:science@csu.edu.cn.
更新日期/Last Update: 2018-08-20