|本期目录/Table of Contents|

[1]邱鑫乐,孟龙,钟怡玮*,等.超重力对镍电极电解制氢的强化研究[J].有色金属科学与工程,2018,(06):11-17.[doi:10.13264/j.cnki.ysjskx.2018.06.002]
 QIU Xinle,MENG Long,ZHONG Yiwei,et al.Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis[J].,2018,(06):11-17.[doi:10.13264/j.cnki.ysjskx.2018.06.002]
点击复制

超重力对镍电极电解制氢的强化研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2018年06期
页码:
11-17
栏目:
出版日期:
2018-12-25

文章信息/Info

Title:
Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis
作者:
邱鑫乐孟龙钟怡玮*郭占成
(北京科技大学钢铁冶金新技术国家重点实验室,北京100083)
Author(s):
QIU Xinle MENG Long ZHONG Yiwei GUO Zhancheng
(State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083,China)
关键词:
电解水超重力泡沫镍孔径槽电压
分类号:
TF803.27
DOI:
10.13264/j.cnki.ysjskx.2018.06.002
文献标志码:
A
摘要:
在自行设计的超重力装置上以恒流条件进行水电解实验研究。实验考察了槽电压、超重力系数和泡沫镍孔径大小的关系。结果表明,超重力场显著提高了水电解的效率,在较高的重力系数和电流密度条件下,可明显降低槽电压。槽电压的降低取决于泡沫镍的孔径,小孔径的泡沫镍电极槽电压降接近于镍板,大孔径的泡沫镍电极槽电压降更大,有利于节能。为降低槽电压,实验考察了镍板电极与泡沫镍电极电解效率的临界关系。

参考文献/References:


[1] NENOFF T M,BERMAN M R,GLASGOW K C,et al. Introduction to the special section on alternative energy systems:hydrogen,solar,and biofuels[J]. Industrial & Engineering Chemistry Research,2012,51(37):11819–11820.
[2] PASTORE M,FANTACCI S,ANGELIS F D. Modeling excited states and alignment of energy levels in dye-Sensitized solar cells:successes,failures,and challenges[J]. Journal of Physical Chemistry C,2010,117(8):3685–3700.
[3] MOMIRLAN M,VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. International Journal of Hydrogen Energy,2005,30(7):795-802.
[4] 钟昇平,郭磊,丁智勇,等. 铁矿粉气基直接还原过程中铁晶须生长观察[J]. 有色金属科学与工程,2018,9(1):15-21.
[5] CHALK S G,MILLER J F. Key challenges and recent progress in batteries,fuel cells,and hydrogen storage for clean energy systems[J]. Journal of Power Sources, 2006,159(1):73-80.
[6] MARINESCU S C,WINKLER J R,GRAY H B. Molecular mechanisms of cobalt-catalyzed hydrogen evolution[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(38):15127-15131.
[7] OSTERLOH F E. Cheminform abstract:inorganic materials as catalysts for photochemical splitting of water[J]. Cheminform,2008,39(13):35-54.
[8] CHENG H,SCOTT K,RAMSHAW C. Intensification of water electrolysis in a centrifugal field[J]. Journal of the Electrochemical Society,2002,149(11):D172-D177.
[9] JAFARIAN M,AZIZI O,GOBAL F,et al. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2007,32(12):1686-1693.
[10] CHEN P C,CHANG Y M,WU P W,et al. Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte[J]. International Journal of Hydrogen Energy,2009,34(16):6596-6602.
[11] KANINSKI M P M,NIKOLIC V M,TASIC G S,et al. Electrocatalytic activation of Ni electrode for hydrogen production by electrodeposition of Co and V species[J]. International Journal of Hydrogen Energy,2009,34(2):703-709.
[12] HABIBI B,POURNAGHI-AZAR M H,RAZMI H,et al. Electrochemical preparation of a novel,effective and low cast catalytic surface for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2008,33(11):2668-2678.
[13] 张荣伟,孙军伟,李升燕,等. 锰元素对铜镍合金电化学性能的影响[J]. 有色金属科学与工程,2018,9(4):60-65.
[14] 刘柏雄,钟素文. 电沉积法制备泡沫镍的研究[J]. 有色金属科学与工程, 2011,2(3):28-31.
[15] RAMSHAW C. The opportunities for exploiting centrifugal fields[J]. Heat Recovery Systems & Chp,1993,13(13):493-513.
[16] 高启瑞,宋波,杨占兵,等. 含钛高炉渣碳化及超重力分离碳化钛的研究[J]. 有色金属科学与工程,2017,8(2):1-7.
[17] MANDIN P,CENSE J M,GEORGES B,et al. Prediction of the electrodeposition process behavior with the gravity or acceleration value at continuous and discrete scale[J]. Electrochimica Acta,2008,53(1):233-244.
[18] WANG M,WANG Z,GUO Z. Understanding of the intensified effect of super gravity on hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2009,34(13):5311-5317.
[19] 王明涌,王志,郭占成. 超重力技术:电化学工业新契机[J]. 工程研究-跨学科视野中的工程,2015(3):289-297.

相似文献/References:

[1]宋高阳a,b,宋波a,等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程,2015,(01):29.[doi:10.13264/j.cnki.ysjskx.2015.01.006]
 SONG Gaoyanga,b,SONG Boa,et al.Application of super gravity to separating non-metallic inclusions from 5052 aluminum alloy melt[J].,2015,(06):29.[doi:10.13264/j.cnki.ysjskx.2015.01.006]
[2]宋高阳,宋波,杨玉厚,等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程,2016,(05预):565.
 Song Gaoyang,Song Bo,Yang Yuhou,et al.Application of super gravity to separate non-metallic i nclusions from 5052 aluminum alloy melt[J].,2016,(06):565.
[3]高启瑞a,b,宋波a,等.含钛高炉渣碳化及超重力分离碳化钛的研究[J].有色金属科学与工程,2017,(02预):31.
 GAO Qirui a,b,SONG Bo a,et al.Research on carbonization of blast furnace slag bearing titanium and separation of TiC phase by super gravity[J].,2017,(06):31.
[4]高启瑞a,b,宋波a,等.含钛高炉渣碳化及超重力分离碳化钛的研究[J].有色金属科学与工程,2017,(02):1.[doi:10.13264/j.cnki.ysjskx.2017.02.001]
 GAO Qiruia,b,SONG Boa,et al.Carbonization of blast furnace slag bearing titanium and separation of TiC phase by super gravity[J].,2017,(06):1.[doi:10.13264/j.cnki.ysjskx.2017.02.001]
[5]董亮,郭丰,王明涌.超重力方向调节电沉积镍箔表面形貌和力学性能[J].有色金属科学与工程,2019,(03):26.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
 DONG Liang,GUO Feng,WANG Mingyong.Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity[J].,2019,(06):26.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
[6]钟海,张倬,佘雪峰,等.稀土铈在电催化水分解中的应用研究进展[J].有色金属科学与工程,2020,(05):49.
 ZHONG Hai,ZHANG Zhuo,SHE Xuefeng,et al.Application of rare earth cerium element in electrocatalytic water splitting[J].,2020,(06):49.

备注/Memo

备注/Memo:
.基金项目:中央高校基本科研业务费(FRF-TP-17-040A2)
通讯作者:钟怡玮(1986- ),男,博士,主要从事铁矿资源高效利用方向的研究,E-mail: sqzhao@ustb.edu.cn.
更新日期/Last Update: 2018-12-20