|本期目录/Table of Contents|

[1]董亮,郭丰,王明涌.超重力方向调节电沉积镍箔表面形貌和力学性能[J].有色金属科学与工程,2019,(03):26-33.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
 DONG Liang,GUO Feng,WANG Mingyong.Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity[J].,2019,(03):26-33.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
点击复制

超重力方向调节电沉积镍箔表面形貌和力学性能(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年03期
页码:
26-33
栏目:
出版日期:
2019-05-20

文章信息/Info

Title:
Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity
文章编号:
1674-9669(2019)03-0026-08
作者:
董亮 郭丰 王明涌
(北京科技大学钢铁冶金新技术国家重点实验,北京 100083)
Author(s):
DONG Liang GUO Feng WANG Mingyong
(State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China)
关键词:
超重力电沉积镍箔表面形貌力学性能
分类号:
TF803
DOI:
10.13264/j.cnki.ysjskx.2019.03.005
文献标志码:
A
摘要:
在电场方向与超重力方向相同和相反条件下电沉积制备金属镍箔. 利用扫描电镜和原子力显微镜对镍箔表面形貌和粗糙度进行了表征,并测试和对比了各种重力条件下电沉积镍箔硬度和拉伸强度. 结果表明,在超重力场作用下电沉积镍箔表面变得更加致密、平整,晶粒细化,粗糙度明显降低. 特别是,当超重力与电场方向相反(电极C)时,镍箔表面更为平整致密. 当超重力方向和电场方向相同(电极B)时,镍箔的HV硬度可达839,抗拉强度可达944 MPa,性能优于电极C镍箔片,且远高于常重力条件下电沉积镍箔HV硬度的294和抗拉强度298 MPa.

参考文献/References:

[1] 刘柏雄, 钟素文. 电沉积法制备泡沫镍的研究[J]. 有色金属科学与工程, 2011, 2(3): 28-31.
[2] 张荣伟, 孙军伟, 李升燕, 等. 锰元素对铜镍合金电化学性能的影响[J]. 有色金属科学与工程, 2018,9(4): 60-65.
[3] 陈敏, 肖玄, 汤爱涛. 钛精矿制备Fe-TiCN金属陶瓷的研究[J].有色金属科学与工程, 2015, 6(5): 70-72.
[4] 宋高阳, 宋波, 杨玉厚等. 利用超重力分离5052铝合金熔体中的非金属夹杂[J]. 有色金属科学与工程, 2015, 6(1): 29-34.
[5] 高启瑞, 宋波, 杨占兵, 等. 含钛高炉渣碳化及超重力分离碳化钛的研究[J]. 有色金属科学与工程,2017, 8(2): 1-7.
[6] PLOWMAN B J, JONES L A, BHARGAVA S K. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition[J]. Chemical Communication, 2015, 51: 4331-4346.
[7] WANG M Y, WANG Z, GUO Z C. Electrodeposited free-crack niw films under super gravity filed: structure and excellent corrosion property[J]. Materials Chemistry and Physics, 2014, 148: 245-252.
[8] NIU X H, LAN M B, ZHAO H L, et al. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures[J]. Analytical Chemistry, 2013, 85: 3561-3569.
[9] LIU T, GUO Z C, WANG Z, et al. Structure and mechanical properties of iron foil electrodeposited in super gravity field[J]. Surface and Coatings Technology, 2010, 204: 3135-3140.
[10] NIA N S, CREUS J, FEAUGAS X, et al. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited ni and ni-w nanocrystalline alloys[J]. Applied Surface Science, 2016,370: 149-159.
[11] GAO S, LIN Y, JIAO X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529: 68-71.
[12] YU X T, WANG M Y, WANG Z, et al. The structure evolution mechanism of electrodeposited porous Ni films on Ni4Cl concentration[J]. Applied Surface Science, 2016, 360: 502-509.
[13] QIAN X, HANG T, LI M, et al. Decoration of micro-nanoscale noble metal particles on 3d porous nickel using electrodeposition technique as electrocatalyst for hydrogen evolution reaction in alkaline electrolyte[J]. ACS applied materials & Interface, 2015, 7: 15716-15725.
[14] KUO Y, LIAO W, YAU S. Effects of Anions on the electrodeposition of cobalt on pt(111) electrode[J]. Langmuir, 2014, 30: 13890-13897.
[15] MALLIK M, MITRA A, SENGUPTA S, et al. Effect of current density on the nucleation and growth of crystal facets during pulse electrodeposition of Sn-Cu lead-free solder[J]. Crystal Growth & Design, 2014, 14: 6542-6549.
[16] LIU Z, ABEDIN S Z E, BORISENKO N, et al. Influence of an additive on zinc electrodeposition in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate[J]. Chemelectrochem, 2015, 2: 1159-1163.
[17] MATSUSHIMA H, BUND A, PLIETH W, et al. Copper electrodeposition in a magnetic field[J]. Electrochimica Acta, 2007, 53: 161-166.
[18] OLVERA S, ESTRADA E M A. Effect of the low magnetic field on the electrodeposition of CoxNi100-x alloys [J]. Materials Characterization, 2015, 105: 136-143.
[19] TUDELA I. Ultrasound-assisted electrodeposition of nickel: effect of ultrasonic power on the characteristics of thin coatings[J]. Surface and Coatings Technology, 2015, 264: 49-59.
[20] BOOPATHI S, KUMAR S S. Impact of ultrasonic waves in direct electrodeposition of nanostructured aupt -alloy catalyst on carbon substrate: structural characterization and its superior electrocatalytic activity for methanol oxidation reaction[J]. Journal of Physical Chemistry c, 2014, 118: 29866-29873.
[21] WANG M Y, WANG Z, GONG X Z, et al. The progress toward electrochemistry intensified by using supergravity field[J]. Chemelectrochem, 2015(2): 1879-1887.
[22] DU J P, SHAO G J, QIN X J. High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties [J]. Materials Letters, 2012, 84: 13-15.
[23] TONG H, KONG L B, WANG C M. Electroless deposition of Ag onto p-Si(100) surface under the condition of the centrifugal fields[J]. Thin Solid Films, 2006, 496: 360-363.
[24] WANG M Y, WANG Z. The intensification technologies to water electrolysis for hydrogen production-A review[J]. Renewable and Sustainable Energy Review, 2014, 29: 573-588.
[25] LAO L, RAMSHAW C, YEUNG H. Process intensification: water electrolysis in a centrifugal acceleration field[J]. Journal of Applied Electrochemistry, 2011, 41: 645-656.
[26] WANG M Y, WANG Z, GUO Z C. Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection[J]. Journal of Electroanalytical Chemistry, 2015, 744: 25-31.
[27] WANG M Y, WANG Z, GUO Z C. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism[J]. Transactions of Nonferrous Metals Society fo China, 2010, 20: 1154-1160.
[28] MORISUE M, FUKUNAKA Y. Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto at tin substrate[J]. Journal of Electroanalytical Chemistry, 2003, 559: 155-163.
[29] LIU T, GUO Z C. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field[J]. Applied Surface Science, 2010, 256: 6634-6640.
[30] WANG M Y, WANG Z. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40: 2173-2181.
[31] LIU T, GUO Z C, WANG Z, WANG M Y. Effects of gravity on the electrodeposition and characterization of nickel foils[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18: 59-65.
[32] CHEN Z H, MA Z P. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution[J]. Journal of Power Sources, 2016, 324: 86-96.
[33] CHEN J F. The application and technology of super gravity[M]. Beijing: Chemical Industry Press, 2002.
[34] TONG H, KONG L B, WANG C M. Electroless deposition of Ag onto P-Si(100) surface under the condition of the centrifugal fields[J]. Thin Solid Films, 2006, 496: 360-363.
[35] SATO M, YAMADA A, AOGAKI R. Electrochemical reaction in a high gravity field vertical to an electrode surface-analysis of diffusion process with a gravity electrode[J]. Japanese Journal of Applied Physics, 2003, 42: 4520-4528.
[36] MOTI E, SHARIAT M H, BAHROLOLOOM M E. Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes[J]. Materials chemistry and physics, 2008, 111: 469-474.
[37] KIUCHI D, MATSUSHIMA H. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of Electrochem Soc, 2006,153: E138-E143.

相似文献/References:

[1]刘柏雄,钟素文.电沉积法制备泡沫镍的研究[J].有色金属科学与工程,2011,(03):7.
 LIU Bai-xiong,ZHONG Su-wen.Nickel Foam Production by Electro-deposition[J].,2011,(03):7.
[2]陈颢,羊建高,李金辉,等.电沉积钨基合金镀层工艺研究[J].有色金属科学与工程,2013,(05):28.
 CHEN Hao,YANG Jian-gao,LI Jin-hui,et al.Coating process conditions of W alloy electrodeposition[J].,2013,(03):28.
[3]钟熊伟,熊婷,陆俊,等.离子液体电解质体系铝及铝合金电沉积与铝精炼研究进展[J].有色金属科学与工程,2014,(02预):6.
 ZHONG Xiong-weiXIONG TingLU JunSHI Zhong-ningHU Xian-weiGAO Bing-liangWANG Zhao-wen.Research progress on electro-deposition and electro-refining of aluminum and aluminum alloy in ionic liquids[J].,2014,(03):6.
[4]钟熊伟,熊婷,陆俊,等.离子液体电解质体系铝及铝合金电沉积与铝精炼研究进展[J].有色金属科学与工程,2014,(02):44.[doi:10.13264/j.cnki.ysjskx.2014.02.008]
 ZHONG Xiong-wei,XIONG Ting,LU Jun,et al.Advances of electro-deposition and aluminum refining of aluminum and aluminum alloy in ionic liquid electrolytes system[J].,2014,(03):44.[doi:10.13264/j.cnki.ysjskx.2014.02.008]
[5]宋高阳a,b,宋波a,等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程,2015,(01):29.[doi:10.13264/j.cnki.ysjskx.2015.01.006]
 SONG Gaoyanga,b,SONG Boa,et al.Application of super gravity to separating non-metallic inclusions from 5052 aluminum alloy melt[J].,2015,(03):29.[doi:10.13264/j.cnki.ysjskx.2015.01.006]
[6]刘美霞,黄柱,李天白,等.Al2O3含量对Ni-W-Al2O3复合镀层性能的影响[J].有色金属科学与工程,2016,(05预):254.
 Effect of AlO concentration on the properties of Ni-W-AlO composite coatings.Effect of Al2O3 concentration on the properties of Ni-W-Al2O3 composite coatings[J].,2016,(03):254.
[7]黄柱,刘美霞,李天白,等.电沉积Ni-W-WC复合镀层摩擦磨损性能研究[J].有色金属科学与工程,2016,(05预):265.
 HUANG Zhu,LIU Meixia,LI Tianbai,et al.Study on Friction Wear Properties of Ni-W-WC CompositeCoatings Electrodeposition[J].,2016,(03):265.
[8]宋高阳,宋波,杨玉厚,等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程,2016,(05预):565.
 Song Gaoyang,Song Bo,Yang Yuhou,et al.Application of super gravity to separate non-metallic i nclusions from 5052 aluminum alloy melt[J].,2016,(03):565.
[9]黄柱,刘美霞,李天白,等.电沉积Ni-W-WC复合镀层摩擦磨损性能[J].有色金属科学与工程,2016,(03):66.[doi:10.13264/j.cnki.ysjskx.2016.03.012]
 HUANG Zhu,LIU Meixia,LI Tianbai,et al.Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J].,2016,(03):66.[doi:10.13264/j.cnki.ysjskx.2016.03.012]
[10]刘美霞,黄柱,李天白,等.Al2O3含量对Ni-W-Al2O3复合镀层性能的影响[J].有色金属科学与工程,2016,(04):55.[doi:10.13264/j.cnki.ysjskx.2016.04.010]
 LIU Meixia,HUANG Zhu,LI Tianbai,et al.Effect of Al2O3 concentration on properties of Ni-W-Al2O3 composite coatings[J].,2016,(03):55.[doi:10.13264/j.cnki.ysjskx.2016.04.010]

备注/Memo

备注/Memo:
收稿日期:2019-01-09
基金项目:国家自然科学基金资助项目(51874020);中央高校基础研究基金资助项目
通信作者:王明涌(1980- ),男,教授,博导,主要从事电化学冶金和产品高值化的研究工作,E-mail:mywang@ustb.edu.cn.
更新日期/Last Update: 2019-06-25