|本期目录/Table of Contents|

[1]王 旭a,廖春发a,肖志华b.NaCl-KCl-Na2WO4-CuO体系电解制备钨铜复合粉体研究[J].有色金属科学与工程,2012,(05):34-38.
 WANG Xua,LIAO Chun-faa,XIAO Zhi-huab.Tungsten-copper alloy powder preparation in KCl-NaCl-Na2WO4-CuO system by molten salt electrolysis[J].,2012,(05):34-38.
点击复制

NaCl-KCl-Na2WO4-CuO体系电解制备钨铜复合粉体研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2012年05期
页码:
34-38
栏目:
冶金·材料
出版日期:
2012-10-29

文章信息/Info

Title:
Tungsten-copper alloy powder preparation in KCl-NaCl-Na2WO4-CuO system by molten salt electrolysis
作者:
王 旭a 廖春发a 肖志华b
江西理工大学,a.冶金与化学工程学院;b. 应用科学学院,江西 赣州341000
Author(s):
WANG Xua LIAO Chun-faa XIAO Zhi-huab
a. School of Metallurgy and Chemical Engineering; b. Faculty of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
关键词:
熔盐电解钨铜合金电极过程槽电压
分类号:
TF111.52
DOI:
-
文献标志码:
A
摘要:
文中研究采用熔盐电解以由Na2WO4和CuO为活性物质电解获得钨铜合金复合前驱粉体.通过循环伏安法对电解质体系及电极过程进行定性分析认为Na2WO4减缓体系活性物质扩散速度,CuO与Na2WO4的电解非同步进行.通过改变活性物质的加入方式进行对比实验,结果表明:在温度750 ℃;以一定比例KCl-NaCl混合熔盐为电解质,在起始槽电压1 V,先加入CuO电解2 h;后加入Na2WO4,调整槽电压至2 V电解3 h,对产物进行X射线衍射(XRD)和扫描电镜(SEM)及能谱分析(EDS)表明,可以获得纯度达到98 %的W-Cu合金粉体.

参考文献/References:

[1] 吕大铭 . 钨铜材料的生产、应用与发展[J] . 中国钨业,2004, 19(5):69-74.
[2] 李洪桂. 稀有金属冶金学[M]. 北京:冶金工业出版社, 1990:64-66.
[3] 李 贞. 细粒钨精矿脱硫降砷工艺的技术改造与生产实践[J]. 有色金属科学与工程,2011,2(4):63-66.
[4] 王久维,都业志. 共还原法制备W-Cu复合粉[J]. 中国钼业,2002,26(5):27-30.
[5] Kim D G, Lee K W,OH S T,et al. Preparation of W-Cunanocomposite powder by hydrogen-reduction of ball-milled Wand CuO powder mixture[J]. Materials Letters,2004,58:1199-1203.
[6] 姚惠龙,林 涛,罗 骥,等. 化学共沉淀法制备钨铜合金[J].稀有金属材料与工程,2009,38(2):348-352.
[7] 程继贵,雷纯鹏,蒋 阳,等. 纳米W-Cu粉末的均相沉淀法制备及其烧结性能[J].中国有色金属学报,2005,15(1):89-93.
[8] Ryu S S,Kim Y D,Moon I H.Dilatometric analysis on thesintering behavior of nanocrystalline W-Cu prepared bymechanical alloying[J].Journal of Alloys and Compounds,2002,335:233-240.
[9] 李云平,曲选辉,郑洲顺,等.热机械法制备超细弥散分布钨铜复合粉末[J].粉末冶金技术,2004,22(5):266-269.
[10] Lee G G,Ha G H,Kim B K.Synthesis of high density ultrafine W/Cu composite alloy by mechano-thermochemical process[J].Powder Metallurgy,2000,43(1):79-82.
[11] 苏维丰,熊 宁,周武平,等. 一种制备W-Cu复合材料的新工艺[J]. 粉末冶金材料科学与工程,2008,12(6):369-373
[12] 朱诗秀. 纳米钨粉生产工艺研究[J]. 有色金属科学与工程, 2012,3(3):36-39.
[13] Gordo E,Chen G Z,Fray D J.Toward optimization of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts[J]. Electrochimica Acta,2004,49:2195-2208.
[14] Chen G Z, Fray D J.Amorphological study of the FFC chromium and titanium powders [J]. Trans. Inst. Min. Metal.l,Sect.C:Miner. ProcessExtr-Metal.l, 2006, 115: 49.
[15] Chen G Z, Elena G, Fray D J.Direct electrolytic preparation of chromium powder[J].Metallurgical and Materials Transactions B,2004,35:223-233.
[16] 邓丽琴,许 茜,李 兵,等.电脱氧法由Nb2O5直接制备金属铌[J].中国有色金属学报,2005,15(4):541-545.
[17] Mohandas K S, Fray D J. Electrochemical deoxidation of solid zirconium dioxide in molten calciumchloride[J].Metallurgical and Material Transition B, 2009, 40: 685-699.
[18] Omel’Chuk A A. Electrorefining of heavy nonferrous metals in molten electrolytes[J]. Russian Journal of Electrochemistry,2010, 46: 680-690.
[19] Mohandas K S, Fray D J. FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis[J]. Trans Indian Inst Met, 2005, 57: 579-592.
[20] Tripathy P K, Gauthier M, Fray D J. Electrochemical deoxidation of titanium foam in molten calciumchloride[J]. Metallurgical and Material Transition B, 2007, 38: 893-900.
[21] Qiu G H, Wang D H, Jin X B, et al. A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5[J]. Electrochimica Acta, 2006, 51: 5785-5793.
[22] 冯乃祥, 刘希诚, 孙 阳. 用熔盐电解法制备超细钨粉[J]. 材料研究学报, 2001, 15: 459-462.
[23] 阿伦.J.巴德, 拉里.R.福克纳. 电化学方法原理和应用[M]. 北京:化学工业出版社, 2005:121-135.
[24] 粱英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1994:45-55.
[25] 张明杰,王兆文. 熔盐电化学原理与应用[M]. 北京:化学工业出版社,2006:229-240.

相似文献/References:

[1]廖春发,杨文强,王 旭,等.由钨酸盐熔盐电解直接制备钨粉的可行性分析[J].有色金属科学与工程,2011,(04):4.
 LIAO Chun-fa,YANG Wen-qiang,WANG Xu,et al.The Feasibility of Tungsten Powder Preparation by Molten Salt Electrolysis from Tungstate[J].,2011,(05):4.
[2]张小联,彭光怀,郭雪峰,等. 氟化物熔盐共电沉积制备Gd-Zr-Mg合金的研究[J].有色金属科学与工程,2011,(04):1.
 ZHANG Xiao-lian,PENG Guang-huai,GUO Xue-feng,et al. Gd-Zr-Mg Master Alloy Production by Co-electrodeposition inFluoride Molten Salt[J].,2011,(05):1.
[3]肖志华a,廖春发b,王旭b,等.熔盐电解制备铜粉的实验研究[J].有色金属科学与工程,2012,(06):28.
 XIAO Zhi-huaa,LIAO Chun-fab,WANG Xub,et al.Experimental study of the preparation of copper powder through molten salt electrolysis[J].,2012,(05):28.
[4]赖华生,王林生.电流密度对稀土熔盐电解影响的探讨[J].有色金属科学与工程,2002,(04):25.
 LAI Hua-sheng,WANG Lin-sheng.Study of the Effect of Current on RE in Molten-salt Electrolysis[J].,2002,(05):25.
[5]黎绵付.浅议提高熔盐电解金属镨生产稳定性的途径[J].有色金属科学与工程,2002,(04):35.
 LI Mian-fu.Improving the Production Stability of Producing Pr-metal in Molten-salt Electrolysis[J].,2002,(05):35.
[6]林伟清,肖祖高.熔盐电解法制取高纯金属镧的研究[J].有色金属科学与工程,2003,(01):32.
 LIN Wei-qing,XIAO Zu-gao.Development of Producing High-purity La-metal in Fused-salt Electrolysis Process[J].,2003,(05):32.
[7]李炜.熔盐电解法制取镝铁合金的研究[J].有色金属科学与工程,1999,(01):29.
[8]张小联.稀土熔盐电解中电解槽温度分布测定[J].有色金属科学与工程,1998,(04):24.
[9]万正瑞.金属钕的生产[J].有色金属科学与工程,1991,(03):142.
[10]赵桂芳.熔盐电解制取稀土金属过程界面现象[J].有色金属科学与工程,1989,(01):10.
[11]王旭a,周才英b,廖春发a.熔盐电解制备钨铜合金粉体槽内温场条件分析[J].有色金属科学与工程,2014,(05):79.[doi:10.13264/j.cnki.ysjskx.2014.05.014]
 WANG Xua,ZHOU Caiyingb,LIAO Chunfaa.Temperature field analysis in tungsten-copper alloy powder preparation by molten salt electrolysis[J].,2014,(05):79.[doi:10.13264/j.cnki.ysjskx.2014.05.014]
[12]王旭,周才英,廖春发.熔盐电解制备钨铜合金粉体槽内温场条件分析[J].有色金属科学与工程,2016,(05预):761.
 WANG Xu,ZHOU Caiying,LIAO Chunfa.Analysis of temperature field in the preparation of tungsten copper alloy powder by molten salt electrolysis[J].,2016,(05):761.
[13]王 旭a,廖春发a,肖志华b.NaCl-KCl-Na2WO4-CuO体系电解制备钨铜复合粉体研究[J].有色金属科学与工程,2016,(05预):1505.
 WANG Xua,LIAO Chun-faa,XIAO Zhi-huab.Research of Preparation for Tungsten-copper alloy powder in KCl-NaCl-Na2WO4-CuO system by molten salt electrolysis[J].,2016,(05):1505.

备注/Memo

备注/Memo:
收稿日期:2012-07-07 基金项目:国家自然科学基金资助项目(51074081) 作者简介:王 旭(1973-  ),博士后,讲师,主要从事熔盐电化学等方面的研究
更新日期/Last Update: 2012-10-30