|本期目录/Table of Contents|

[1]谢志鹏,蔡定建,杨亮.锌铈液流电池研究进展[J].有色金属科学与工程,2016,(05预):1040-1044.
 XIE Zhi-peng,CAI Ding-jian,YANG Liang.Research progress of zinc-cerium redox flow battery[J].,2016,(05预):1040-1044.
点击复制

锌铈液流电池研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2016年05期预
页码:
1040-1044
栏目:
出版日期:
2016-10-31

文章信息/Info

Title:
Research progress of zinc-cerium redox flow battery
作者:
谢志鹏蔡定建杨亮
(江西理工大学冶金与化学工程学院,赣州市,341000)
Author(s):
XIE Zhi-peng CAI Ding-jian YANG Liang
(School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou341000)
关键词:
稀土储能材料新能源液流电池
分类号:
-
DOI:
-
文献标志码:
-
摘要:
能源是经济发展和人们生活的重要物质基础。化石燃料的过度消耗加速了能源危机和环境污染的出现。新能源利用是解决能源问题和环境问题的必然选择。太阳能、风能和潮汐能等新能源发电具有间歇性的特点,给电网的安全稳定运行带来很大的挑战。储能技术是新能源开发的关键技术。在各种储能技术中,电化学储能日益受到重视。液流电池是一种高效大规模储能系统。锌铈液流电池是已知的单电池电压最高的水溶液电解质电池。本文阐述了锌铈液流电池的工作原理,从正半电池反应、负半电池反应和隔膜三个方面综述了当前的研究进展。指出了锌铈液流电池研究中需重点关注的基础问题。

参考文献/References:

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.
[2] Caralis G, Papantonis D, Zervos A. The role of pumped storage systems towards the large scale wind integration in the Greek power supply system [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):2558-2565.
[3] Kim HM, Rutqvist J, Ryu DW, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance [J]. Applied Energy, 2012, 92:653-667.
[4]Nguyen TD, Beng GFH, Tseng KJ, et al. Modeling and position-sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage systems. Journal of Power Electronics, 2012, 12(5):758-768.
[5] Bhongade S, Tyagi B. Application of superconducting magnet energy storage to a multi-area automatic generation control scheme suitable in a restructured power system [J]. Journal of Engineering and Technology, 2013, 3(2):82-89.
[6] Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture [J]. Advanced Energy Materials, 2012, 2(4):438-444.
[7] Goodenough JB, Cockrell VH. Evolution of strategies for modern rechargeable batteries [J]. Accounts of Chemical Research, 2013, 46(5):1053-1061.
[8] Osório WR, Freitas ES, Peixoto LC, et al. The effects of tertiary dendrite arm spacing and segregation on the corrosion behavior of a Pb-Sb alloy for lead-acid battery components [J]. Journal of Power Sources, 2012, 207:183-190.
[9] Fan N, Li XH, Li H, et al. The application of spray drying method in valve-regulated lead-acid battery [J]. Journal of Power Sources, 2013, 223:114-118.
[10] Byon HR, Gallant BM, Lee SW, et al. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries [J]. Advanced Functional Materials, 2013, 23(8):1037-1045.
[11] Kumar A, Reddy ALM, Mukherjee A, et al. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application [J]. ACS Nano, 2011, 5(6):4345~4349.
[12] Wang W, Luo Q T, Wei X L, et al. Recent progress in redox flow battery research and development [J]. Advanced Functional Materials, 2013, 23(8):970-986.
[13] González Z, Sánchez A, Blanco C, et al. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery [J]. Electrochemistry Communications, 2011, 13(12):1379-1382
[14] Li WY, Liu JG, Yan CW. Graphite-graphite oxide composite electrode for vanadium redox flow battery [J]. Electrochimica Acta, 2011, 56(14):5290-5294.
[15] You DJ, Zhang HM, Chen J. A simple model for the vanadium redox battery [J]. Electrochimica Acta, 2009, 54(27):6827-6836.
[16] 徐波,齐亮,姚克俭,等. 全钒液流电池电解液分布的数值模拟[J]. 化工进展,2013, 32(2): 313-319.
[17] 汪南方,刘素琴. 全钒液流电池隔膜的制备与性能[J]. 化学进展,2013, 25(1):60-68.
[18] 杜涛,廖小东,郝彰翔,等. 全钒液流电池性能及电极材料研究[J]. 电源技术,2013, 37(2): 231-233.
[19] Xie ZP, Liu QC, Chang ZW, et al. The developments and challenges of cerium half-cell in zinc-cerium reodox flow battery for energy storage [J]. Electrochimica Acta, 2013, 90:695-704.
[20] Clarke R, Dougherty B, Harrison S, et al. Lanthanide Batteries. United States, WO 03/017408 A1[P]. 2003-02-27.
[21] Clarke R, Dougherty B, Harrison S, et al. Load leveling battery and methods therefor. United States, US 2004/ 0197649 A1[P], 2004-10-07.
[22] Clarke R, Dougherty B, Harrison S, et al. Mixed electrolyte battery.United States, US 7560189 B2[P], 2009-07-14.
[23] Wei Y, Fang B, Arai T, et al. Electrolytic oxidation of Ce(III) in nitric acid and sulfuric acid media using a flow type cell [J]. Journal of Applied Electrochemistry, 2005, 35(6):561-566.
[24] Liu Y, Xia X, Liu H. Studies on cerium (Ce4+/Ce3+)-vanadium (V2+/V3+) redox flow cell—cyclic voltammogram response of Ce4+/Ce3+ redox couple in H2SO4 solution [J]. Journal of Power Sources, 2004, 130(1-2):299-305.
[25] Xie ZP, Zhou DB, Xiong FJ, et al. Cerium-zinc redox flow battery: Positive half-cell electrolyte studies [J]. Journal of Rare Earths, 2011, 29(6):567-573.
[26] Xiong FJ, Zhou DB, Xie ZP, et al. A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application [J]. Applied Energy, 2012, 99:291-296.
[27] Paulenova A, Creager SE, Navratil JD, et al. Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions [J]. Journal of Power Sources, 2002, 109(2):431-438.
[28] Xie ZP, Xiong FJ, Zhou DB. Effect of sulfosalicylic acid on kinetics of Ce3+/Ce4+ electrode reaction [J]. Advanced Materials Research, 2011, 279:451-455.
[29] 谢志鹏. 锌铈液流电池正极电解液的研究[D]. 长沙:中南大学化学化工学院,2011.
[30] Leung PK, Ponce-de-Le?n C, Low CTJ, et al. Characterization of a zinc-cerium flow battery [J]. Journal of Power Sources, 2011, 196(11):5174-5185.
[31] Xie ZP, Xiong FJ, Zhou DB. Study of the Ce3+/Ce4+ redox couple in mixed-acid media (CH3SO3H & H2SO4) for redox flow battery application [J]. Energy & Fuels, 2011, 25(5): 2399-2404.
[32] Xie ZP, Xiong FJ, Zhou DB. Nitroso-R-salt in aqueous solutions for redox flow battery application [J]. Advanced Materials Research, 2011, 239-242:2813-2816.
[33] Leung PK, Ponce-de-Le?n C, Low CTJ, et al. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery [J]. Electrochimica Acta, 2011, 56(18):6536-6546.
[34] Leung PK, Ponce-de-Le?n C, Low CTJ, et al. Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery [J]. Electrochimica Acta, 2011,56(5):2145-2153.
[35] Leung PK, Ponce-de-Le?n C, Walsh FC. An undivided zinc-cerium redox flow battery operating at room temperature (295 K) [J]. Electrochemistry Communications, 2011, 13(8):770-773.

相似文献/References:

[1]谢志鹏,蔡定建,杨亮.锌铈液流电池研究进展[J].有色金属科学与工程,2014,(01):42.
 XIE Zhi-peng,CAI Ding-jian,YANG Liang.Research progress of zinc-cerium redox flow battery[J].,2014,(05预):42.

备注/Memo

备注/Memo:
通信作者:谢志鹏(1973-),男,讲师,博士,研究方向为电化学储能技术。E-mail: zhpxie_06@126.com
更新日期/Last Update: 2016-04-01