|本期目录/Table of Contents|

[1]徐秉声,等.熔融Sn-3.0Ag-0.5Cu在倾斜铜基板上表面形貌的模拟[J].有色金属科学与工程,2016,(05预):890-894.
 XU Bing-sheng,WU Hu,et al.Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu wetting on the inclined Cu substrate[J].,2016,(05预):890-894.
点击复制

熔融Sn-3.0Ag-0.5Cu在倾斜铜基板上表面形貌的模拟(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2016年05期预
页码:
890-894
栏目:
出版日期:
2016-10-31

文章信息/Info

Title:
Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu wetting on the inclined Cu substrate
作者:
徐秉声 2吴湖1韩琳1陈军伟1袁章福1*
(1. 北京大学工学院固体废弃物资源化技术与管理北京市重点实验室,北京 100871;2. 北京矿冶研究总院,北京 100160 )
Author(s):
XU Bing-sheng1 2 WU Hu1 HAN Lin1 CHEN Jun-wei1 YUAN Zhang-fu1
(1.Beijing Key Laboratory for Solid Waste Utilization and Management, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China; 2. Beijing General Research Institute of Mining & Metallurgy, Beijing 100160, China)
关键词:
无铅焊锡表面形貌滞后性数值模拟
分类号:
-
DOI:
-
文献标志码:
-
摘要:
通过润湿性实验,借助有限元软件Surface Evolver模拟研究了在490K温度下熔融态的无铅焊料Sn-3.0Ag-0.5Cu在倾斜铜基板上的铺展行为及界面特性。根据经验方程拟合熔滴侧面轮廓曲线并获得三相点处的接触角大小。经计算发现,在基板的倾斜角度较小时,三相接触线几乎不发生移动,三相接触线的后三相点沿基板向前移动,前三相点保持不动,相应地,前进角逐渐增大并达到最大值。随着基板倾斜角度的继续增大,前三相点开始向前移动,导致前进角逐渐减小,最终熔滴从基板上滑落。通过模拟铺展过程表征了接触角的滞后现象;通过SEM及EDS手段分析界面微观结构,说明了在润湿过程中发生了界面化学反应,确定了金属间化合物Cu6Sn5生成并呈扇贝形分布。

参考文献/References:

[1] Lai H, Duh J. Lead-free Sn–Ag and Sn–Ag–Bi solder powders prepared by mechanical alloying[J]. Journal of electronic materials, 2003, 32 (4): 215–220.
[2] Xu H, Yuan Z, Lee J, et al. Contour evolution and sliding behavior of molten Sn–Ag–Cu on tilting Cu and Al2O3 substrates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 359(1-3): 1-5.
[3] Allen S, Notis M, Chromik R, et al. Microstructural evolution in lead-free solder alloys. Part II. Directionally solidified Sn–Ag–Cu,Sn–Cu and Sn–Ag[J]. Journal of Materials Research, 2004, 19(5): 1425–1431.
[4] Krasovitski B, Marmur, A. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate[J]. Langmuir, 2005, 21(9): 3881–3885.
[5] Eustathopoulos N. Dynamics of contact angle phenomenon[J]. Acta Materialia, 1998, 46(7): 2319-2327.
[6] Whyman G, Bormashenko E. Oblate spheroid model for calculation of the shape and contact angles of heavy droplets[J]. Journal of colloid and interface science, 2009,331(1):174-177.
[7] Abdelhadi O M, Ladani L. IMC growth of Sn–3.5Ag/Cu system: combined chemical reaction and diffusion mechanisms[J]. Journal of Alloys and Compounds, 2012, 537 (5): 87–99.
[8] Suzuki S, Nakajima A, Tanaka K, et al. Sliding behavior of water droplets online-patterned hydrophobic surfaces[J]. Applied Surface Science, 2008, 254 (6): 1800–1805.
[9] He B, Lee J, Patankar N A. Contact angle hysteresis on rough hydrophobic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 248(1–3): 101–104.
[10] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414: 33–34.
[11] Chou T, Hong S, Sheng Y, et al. Drops sitting on a tilted plate: receding and advancing pinning[J]. Langmuir, 2012, 28 (11): 5158–5166.
[12] Quéré D, Azzopardi M J, Delattre L. Drops at rest on a tilted plane[J]. Langmuir, 1998,14 (8): 2213–2216.
[13] Yuan Z, Mukai K, Takagi K, et al. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures[J]. Journal of Colloid and Interface Science, 2002, 254 (2): 338–345.
[14] Yuan Z, Mukai K, Huang W. Surface tension and its temperature coefficient ofmolten silicon at different potentials[J]. Langmuir, 2002, 18 (6) : 2054–2062.
[15] Bonn D, Eggers J, Indekeu J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009,81: 739–805.

相似文献/References:

[1]王松,谢明,陈永泰,等.Al2O3La2O3Y2O3/Cu复合材料的电弧侵蚀特性研究[J].有色金属科学与工程,2014,(04):28.[doi:10.13264/j.cnki.ysjskx.2014.04.006]
 WANG Song,XIE Ming,CHEN Yongtai,et al.Arc erosion characteristics of Al2O3La2O3Y2O3/Cu composite[J].,2014,(05预):28.[doi:10.13264/j.cnki.ysjskx.2014.04.006]
[2]刘文扬,张建波,邬善江,等.Si对Ti3SiC2/Al复合材料的摩擦性能影响[J].有色金属科学与工程,2017,(05预):61.
 LIU WenyangZHANG Jiangbo WU Shangjiang HU MeijunCHEN Tingting GUO Lili.Effects of Si on Friction Properties of Ti3SiC2/Al Composites[J].,2017,(05预):61.
[3]刘文扬a,张建波b,邬善江a,等.Si对Ti3SiC2/Al复合材料的摩擦性能影响[J].有色金属科学与工程,2017,(05):89.[doi:10.13264/j.cnki.ysjskx.2017.05.013]
 LIU Wenyanga,ZHANG Jianbob,WU Shanjianga,et al.Effects of Si on friction properties of Ti3SiC2/Al composites[J].,2017,(05预):89.[doi:10.13264/j.cnki.ysjskx.2017.05.013]
[4]张钦英,陈颢,任兴润,等.Al靶溅射功率对CrAlN涂层组织结构及摩擦性能的影响[J].有色金属科学与工程,2017,(05):109.[doi:10.13264/j.cnki.ysjskx.2017.05.016]
 ZHANG Qinying,CHEN Hao,REN Xingrun,et al.Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J].,2017,(05预):109.[doi:10.13264/j.cnki.ysjskx.2017.05.016]
[5]董亮,郭丰,王明涌.超重力方向调节电沉积镍箔表面形貌和力学性能[J].有色金属科学与工程,2019,(03):26.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
 DONG Liang,GUO Feng,WANG Mingyong.Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity[J].,2019,(05预):26.[doi:10.13264/j.cnki.ysjskx.2019.03.005]
[6]徐秉声,吴湖,韩琳,等.熔融Sn-3.0Ag-0.5Cu在倾斜铜基板上表面形貌的模拟[J].有色金属科学与工程,2014,(04):7.[doi:10.13264/j.cnki.ysjskx.2014.04.002]
 XU Bingsheng,WU Hu,et al.Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu melting on the inclined Cu substrate[J].,2014,(05预):7.[doi:10.13264/j.cnki.ysjskx.2014.04.002]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(51174008);中国科学院战略性先导科技专项-实践十号返回式科学实验卫星(XDA04020411, XDA04020202-11)通讯作者:袁章福(1963-),男,博士,教授,从事资源与能源工程方面的研究,E-mail: zfyuan@pku.edu.cn
更新日期/Last Update: 2016-04-01