|本期目录/Table of Contents|

[1]闵小波,王密,梁彦杰,等.含镉废渣机械力化学稳定研究[J].有色金属科学与工程,2015,(02):7-13.[doi:10.13264/j.cnki.ysjskx.2015.02.002]
 MIN Xiaobo,WANG Mi,LIANG Yanjie,et al.Stabilization of cadmium sludge by mechanical chemistry method[J].,2015,(02):7-13.[doi:10.13264/j.cnki.ysjskx.2015.02.002]
点击复制

含镉废渣机械力化学稳定研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2015年02期
页码:
7-13
栏目:
出版日期:
2015-05-01

文章信息/Info

Title:
Stabilization of cadmium sludge by mechanical chemistry method
作者:
闵小波12王密1梁彦杰12柴立元12张建强1张纯1周波生1沈忱1
1.中南大学冶金与环境学院,长沙 410083; 2.国家重金属污染防治工程技术研究中心,长沙 410083
Author(s):
MIN Xiaobo12WANG Mi1LIANG Yanjie12 CHAI Liyuan12ZHANG Jianqiang1ZHANG Chun1 ZHOU Bosheng1SHEN Chen1
1.School of Metallurgical and Environment, Central South University, Changsha 410083, China 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
关键词:
机械力化学含镉废渣稳定化浸出毒性吸附
分类号:
TF819.2
DOI:
10.13264/j.cnki.ysjskx.2015.02.002
文献标志码:
A
摘要:
通过实验研究了机械球磨方法稳定含镉废渣中的镉,并重点考察了稳定剂种类、球磨介质、稳定剂用量、球料比和球磨时间等工艺参数对球磨稳定效果的影响.在最佳工艺条件下(稳定剂为单质铁粉、球磨介质为不锈钢、添加剂用量为6 %、球料质量比为B/M =6∶1、球磨时间为1 h、球磨机转速为500 r/min),含镉废渣中镉的浸出毒性(TCLP)从58.212 mg/L 降低到0.019 mg/L,镉的稳定率达到了99.97 %.X射线衍射和扫描电镜-能谱分析表明,球磨后的零价铁粉在酸性溶液中会被腐蚀,其表面会形成一层对镉具有吸附作用的腐蚀层.

参考文献/References:

[1] 王积伟, 张培玉, 陈舒, 等. 五种重点关注的重金属废渣的处理方法与利用现状 [J]. 环境工程, 2011(增刊1):212-216.
[2] Wu S M, Xue Y Z, Zhou L M, et al. Structure and morphology evolution in mechanochemical processed CuInS2 powder[J]. Journal of Alloys and Compounds, 2014, 600: 96-100.
[3] Lu S, Huang J, Peng Z, et al. Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations[J]. Chemical Engineering Journal, 2012, 195/196: 62-68.
[4] Stellacci P, Liberti L, Notarnicola M, et al. Valorization of coal fly ash by mechano-chemical activation: Part I. Enhancing adsorption capacity[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 11-8.
[5] Stellacci P, Liberti L, Notarnicola M, et al. Valorization of coal fly ash by mechano-chemical activation: Part II. Enhancing pozzolanic reactivity[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 19-24.
[6] Setoudeh N, Welham N J. Ball milling induced reduction of SrSO4 by Al[J]. International Journal of Mineral Processing, 2011, 98(3/4): 214-8.
[7] Takacs L. Self-sustaining reactions induced by ball milling[J]. Progress in Materials Science, 2002, 47(4): 355-414.
[8] Calos N J, Forrester J S, Schaffer G B. A crystallographic contribution to the mechanism of a mechanically induced solid state reaction[J]. Journal of Solid State Chemistry, 1996, 122(2): 273-280.
[9] Zhang W, Huang J, Yu G, et al. Mechanochemical destruction of Dechlorane Plus with calcium oxide[J]. Chemosphere, 2010, 81(3): 345-350.
[10] Nomura Y, Fujiwara K, Terada A, et al. Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO[J]. Chemosphere, 2012, 86(3): 228-234.
[11] Inoue T, Miyazaki M, Kamitani M, et al. Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH[J]. Advanced Powder Technology, 2005, 16(1): 27-34.
[12] Li M G, Sun C J, Gau SH, et al. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 586-691.
[13] Chai L Y, Liang Y J, Ke Y, et al. Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1129-1138.
[14] Ke Y, Chai L Y, Liang Y J, et al. Sulfidation of heavy-metal-containing metallurgical residue in wet-milling processing[J]. Minerals Engineering, 2013, 53:136-143.
[15] Montinaro S, Concas A, Pisu M, et al. Remediation of heavy metals contaminated soils by ball milling[J]. Chemosphere, 2007, 67(4): 631-639.
[16] Montinaro S, Concas A, Pisu M, et al. Immobilization of heavy metals in contaminated soils through ball milling with and without additives[J]. Chemical Engineering Journal, 2008, 142(3): 271-284.
[17] Montinaro S, Concas A, Pisu M, et al. Rationale of lead immobilization by ball milling in synthetic soils and remediation of heavy metals contaminated tailings[J]. Chemical Engineering Journal, 2009, 155(1/2): 123-131.
[18] Palaniandy S, Azizli K A M, Hussin H, et al. Study on mechanochemical effect of silica for short grinding period[J]. International Journal of Mineral Processing, 2007, 82(4): 195-202.
[19] Kowalski K P, S Gard E G. Implementation of zero-valent iron (ZVI) into drinking water supply - Role of the ZVI and biological processes[J]. Chemosphere, 2014, 117: 108-114.
[20] Chang G D, Chen T, Liu H, et al. A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2014, 244: 264-272.
[21] Wan J, Pressigout J, Simon S, et al. Distribution of As trapping along a ZVI/sand bed reactor[J]. Chemical Engineering Journal, 2014, 246: 322-327.
[22] US A. Environment protection agency office of solid waste[J]. Hazardous Waste Characteristics Scoping Study, 1996(3):1-3.
[23] Nemati K, Abubakar N K, Sobhanzadeh E, et al. A modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge[J]. Microchemical Journal, 2009, 92(2): 165-174.
[24] Naseri E, Reyhanitabar A, Oustan S, et al. Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology[J]. Geoderma, 2014, 232/234: 547-555.
[25] Song S, Lopez V A, Hernandez-Campos D J, et al. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 2006, 40(2): 364-372.
[26] Liu R P, Sun L H, Qu J H, et al. Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents[J]. Desalination, 2009, 249(3): 1233-1240.
[27] Streat M, Hellgardt K, Newton N L R. Hydrous ferric oxide as an adsorbent in water treatment: Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions[J]. Process Safety and Environmental Protection, 2008, 86(1): 21-30.
[28] Nasiri T B, Honarmandi P, Ebrahimi K R, et al. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method[J]. Materials Letters, 2009, 63(5): 543-549.
[29] Kuziora P, Wyszynska M, Polanski M, et al. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9883-9890.
[30] Sun F, Osseo A K A, Chen Y, et al. Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI[J]. Journal of Hazardous Materials, 2011, 196: 311-318.
[31] Triszcz J M, Porta A, Einschlag F S G. Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal[J]. Chemical Engineering Journal, 2009, 150(2/3): 431-440.
[32] Ye M, Huang J, Chen R, et al. Removeal of arsenic(III) from water by using a new class of zero-valent iron modified mesoporous silica molecular sieves SBA-15[J]. Advanced Materials Research, 2012, 356:423-432.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-03-11基金项目:国家公益性行业可研专项(201509050);湖南省科技重大专项(2014FJ1011);长沙市科技项目(k1201010-61)作者简介:闵小波(1973- ),男,教授,博导,主要从事有色金属工业废水处理与回用、工业固体废物资源化与污染控制、有色冶金清洁生产工艺等方向研究,E-mail: mxbcsu@163.com.
更新日期/Last Update: 2015-03-20