|本期目录/Table of Contents|

[1]陈军,梅文捷,曾敏,等.羧基取代镍酞菁配合物的合成及其电化学性能研究[J].有色金属科学与工程,2015,(05):45-51.[doi:10.13264/j.cnki.ysjskx.2015.05.009]
 CHEN Jun,MEI Wenjie,ZENG Min,et al.Synthesis and properties of carboxyl substituted nickel phthalocyanineas cathode materials for lithium ion batteries[J].,2015,(05):45-51.[doi:10.13264/j.cnki.ysjskx.2015.05.009]
点击复制

羧基取代镍酞菁配合物的合成及其电化学性能研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2015年05期
页码:
45-51
栏目:
出版日期:
2015-10-20

文章信息/Info

Title:
Synthesis and properties of carboxyl substituted nickel phthalocyanineas cathode materials for lithium ion batteries
作者:
陈军梅文捷曾敏郭进康刘德芳钟盛文
江西理工大学材料科学与工程学院,江西 赣州 341000
Author(s):
CHEN Jun MEI Wenjie ZENG Min GUO Jinkang LIU Defang ZHONG Shengwen
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000,China
关键词:
有机化合物羧基酞菁锂离子电池正极材料电化学性能
分类号:
TF111.5; TM911.14
DOI:
10.13264/j.cnki.ysjskx.2015.05.009
文献标志码:
A
摘要:
采用“固相”模板合成法和特殊的分离提纯工艺制备得到纯净的四羧基取代镍酞菁有机配合物,将其分别与一定比例的导电剂I2混合掺杂,采用球磨分散法制备得到酞菁活性纳米颗粒.以锂片作为负极,考察该纳米活性颗粒的电化学性能,并分析其羧基官能团导电机理.制备的酞菁纳米活性颗粒在0.3~3.2 V截止电压下的初始放电容量为852 mA·h/g,经过20次循环后的放电容量迅速下降到400 mA·h/g左右,此后保持平稳,在第55次循环后的比容量仍然保持300 mA·h/g,初步研究表明具备一定的电化学活性.

参考文献/References:

[1] 冯瑞, 王立伟, 吕之阳, 等. 高性能LiFePO4/碳纳米笼锂离子电池正极材料[J].化学学报, 2014, 72: 653.
[2] 钟盛文,钟风娣,张骞.锂离子正极材料LiNi0.5Mn0.3Co0.2O2的合成与掺杂Al的性能研究[J].有色金属科学与工程,2013,4(4):11-16.
[3] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
[4] 赵磊, 王维坤, 王安邦,等. 含氧有机物作为锂电池正极材料[J]. 化学进展, 2010, 22 (12): 2268-2715.
[5] Liang Y L, Tao Z L, Chen J. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials,2012(2):742-769.
[6] Wang Y C, Luo L, Liu Y, et al. Research development on polymer cathode materials for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32 (1): 134-139.
[7] 王诗文, 陶占良, 陈军. 锂离子电池有机共轭羰基化合物电极材料研究进展[J].科学通报, 2013, 58(31): 3132-3139.
[8] Chen H, Armand M, Demailly G, et al. From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem., 2008, 1(4): 348-355.
[9] Reddy A L M, Nagarajan S, Chumyim P. Lithium storge mechanisms in purpurin based organic lithium ion battery electrodes[J]. Scientific Reports, 2012, 2: 960.
[10] Zeng R H, Li X P, Qiu Y C. Synthesis and properties of a lithium-organic coordination compound as lithium-inserted materials for lithium ion batteries[J]. Electrochemistry Communications, 2010, 12: 1253-1256.
[11] Liang Y L, Zhang P, Chen J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries[J]. Chemical Science, 2013(4): 1330-1337.
[12] Liang Y L, Zhang P, Yang S Q. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3: 600-605.
[13] 王维坤, 张勇勇, 王安邦,等. 锂电池正极材料1,4,5,8-四羟基-9,10-蒽醌的电化学性能[J]. 物理化学学报, 2010, 26 (1):47-50.
[14] Zhang Y Y,Wang W K,Wang A B,et al.Study on the 1,4,5,8-tetra hydroxyl-hexylbenzo-tetraquinone as cathode materials for lithium ion batteries[C]//15th National Conference on Electrochemistry (Changchun), 2009:B-P33.
[15] Yao M,Senoh H,Sakai T. 5,7,12,14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries[J]. International Journal of Electrochemical Science, 2011(6): 2905-2911.
[16] Geng J Q,Bonnet J P, Renault S. Polyimides: Promising energy-storage materials[J]. Angewandte Chemie International Edition, 2010, 49: 8444-8448.
[17] Geng J Q,Bonnet J P, Renault S. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storge:Case of tetraketopiperazine unit[J].Energy & Environmental Science, 2010(3): 1929-1933.
[18] Tobishima S,Yamaki J,Yamaji A.Cathode characteristics of organic electron acceptors for lithium batteries[J].Journal of the Electrochemical Society, 1984, 131 (1): 57-63.
[19] Cui Y Z,Hua S N.Study on the 2,4,7-trinitro-9-fluorenone[J].Journal of Shandong Normal University(Nature Science),2000, 15(2):157-161.
[20] Bu P, Liu S Q, Lu Y. Effects of carbon back on the electrochemical performance of lithium-organic coordination compound batteries[J]. International Journal of Electrochemical Science, 2012(7): 4617-4624.
[21] Zhao L, Wang W K, Wang A B.A MC/AQ parasitic composite as cathode material for lithium battery[J]. Journal of the Electrochemical Society, 2011, 158: 991-996.
[22] Genorio B, Pirnat K, Cerc-Korosec R. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2010, 49: 7222-7224.
[23] Luo C,Huang R M,Kevorkyants R,et al. Self-assembled organic nanowires for high power density lithium[J]. Nano Letters, 2014, 14: 1596-1602.
[24] Chen H Y, Armand M, Courty M. Lithium salt of tetrahydroxybenzopuinone: toward the development of a sustainable Li-Ion battery[J]. Journal of American Chemical Society,2009,131:8984-8988.
[25] Wang S W, Wang L J, Zhang K,et al.Organic Li4C8H2O6 Nanosheets for Lithium-Ion Batteries[J]. Nano Letters, 2013, 13: 4404-4409.
[26] Armand M, Grugeon S, Vezin H.Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009(8): 120-125.
[27] Renault S, Brandell D, Gustafsson T. Improving the electrochemical performance of organic Li-Ion battery electrodes[J].Chemical Communications, 2013, 49: 1945-1947.
[28] Renault S, Geng J Q, Dolhem F. Evaluation of polyketones with N-cyclic structure as electrochemical energy storage: Case of pyromellitic diimide dilithium salt[J]. Chemical Communications, 2011, 47: 2414-2416.
[29] Kim D J, Je S H, Sampath S. Effect of N-substitution in naphthalenediimides On the electrochemical performance of organic rechargeable batteries[J]. Rsc Advances, 2012(2): 7968-7970.
[30] Gall L T, Reiman K H, Grossel M C. Poly (2,5-dihydroxy-1,4-benzoquinone -3,6-methylene): A new organic polymer as positive electrode material for rechargeable lithium batteries[J]. Journal of Power Sources, 2003, 119: 316-320.
[31] Nokami T, Matsuo T,Inatomi Y.Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion high capacity[J]. Journal of American Chemical Society, 2012, 134: 19694-19700.
[32] Haringer D, Novak P, Haas O.Poly(5-amino-1,4-naphthoquinone), a novel lithium-inserting electroactive polymer with high specific charge[J]. Journal of the Electrochemical Society, 1999, 146: 2393-2396.
[33] Tang Z P, Xu G X. The application of poly(1-aminoantraquinone) for positive electrode material in lithium secondary battery[J]. Acta Physico-Chimica Sinica, 2003, 19: 307-310.
[34] Song Z P, Zhan H, Zhou Y H. Anthraquinone based polymer as performance cathode material for rechargeable lithium batteries[J]. Chemical Communications, 2009,75: 448-450.
[35] Liu K, Zheng J M, Zhong G M. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries[J]. Journal of Materials Chemistry, 2011,21: 4125-4131.
[36] 王秀军,黄宗浩,苏忠民,等. 酞菁、酞菁铁及酞菁镍电子性质的理论研究[J]. 高等学校化学学报,1997, 18(11):1847-1850.
[37] Kobayashi N. Dimers, trimers and oligomers of phthalocyanines and related compounds[J]. Coordination Chemistry Reviews, 2002, 227:129-152.
[38] 陈军, 王双青, 杨国强. 有机金属酞菁类化合物及其非线性光限幅特性[J]. 物理化学学报, 2015, 31(4): 595-611.
[39] 刘同明,汪福临. 碘掺杂双酞菁镥和电学性能的研究[J]. 化学学报,1989,47:967-970.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-02-21基金项目:国家自然科学基金资助项目(E0210); 2011年度江西省动力电池重大科技专项资助项目作者简介:陈军(1981- ),博士,高级工程师,主要从事有机功能材料的设计、合成及其光电性能研究, E-mail: chenjun@iccas.ac.cn.通信作者:钟盛文(1963- ),博士,教授,主要从事锂离子电池及其材料研究,E-mail: zhongshw@126.com.
更新日期/Last Update: 2015-10-30