[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[2] DENG Y, LIU S, LIANG X. Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode[J]. Journal of Solid State Electrochemistry, 2013, 17: 1067-1075.
[3] CONG L N, GAO X G, MA S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modi cation with Li4Ti5O12[J]. Electrochimica Acta, 2014, 115: 399-406.
[4] LIU J, MANTHIRAM A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells[J]. Chemistry of Materials, 2009, 21: 1695-1707.
[5] 李金辉,郑顺,熊道陵,等. 废旧锂离子电池正极材料有价资源回收方法[J].有色金属科学与工程, 2013, 4(4):29-35.
[6] 段剑锋. 20Ah富锂锰动力电池的性能研究[J].有色金属科学与工程2013, 4(2): 37-40.
[7] 胡伟, 钟文胜. 富锂锰基正极材料的改性及电化学性能研究[J]. 有色金属科学与工程, 2014, 5(4): 32-36.
[8] KIM J S, JOHNSON C S, VAUGHEY J T, et al. Pre-conditioned layered electrodes for lithium batteries[J]. Journal of Power Sources, 2006, 153: 258-264.
[9] LUO S Q, WALID A D. Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design[J]. Journal of Materials Chemistry A, 2015, 3(17): 8992-9010.
[10] CHEN Y, XU G, LI J, et al. High capacity 0.5Li2MnO3·0.5Li Ni0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method[J]. Electrochimica Acta, 2013, 87: 686-692.
[11] 徐宝和, 吴甜甜, 钟盛文,等. Si4+掺杂对富锂Li[Li0.15Mn0.575Ni0.275]O2的研究[J]. 有色金属科学与工程, 2012, 3(2): 24-27.
[12] 钟胜文, 黎明旭, 张骞,等. 富锂锰基正极材料的高温储存性能研究[J]. 有色金属科学与工程, 2013, 4(3): 46-49.
[13] JO Y N, PRASANNA K, PARK S J, et al. Characterization of Li-rich xLi2MnO3·(1-x)Li[MnyNizCo1-y-z]O2 as cathode active materials for Li-ion batteries[J]. Electrochimica Acta, 2013, 108: 32-38.
[14] IDEMOTO Y, NARAI H, KOURA N. Crystal structure and cathode performance on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries[J]. Journal of Power Sources, 2003, 119/120/121: 125-129.
[15] CHO J, KIM Y J, PARK B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chemistry of Materials, 2000, 12: 3788-3791.
[16] WANG G X, BEWLAY S, YAO J, et al. Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries[J]. Journal of Power Sources,2003, 119: 189-194.
[17] 钟盛文, 钟凤娣, 张骞. 锂离子正极材料LiNi0.5Mn0.3Co0.2]O2的合成与掺杂Al的性能研究[J]. 有色金属科学与工程, 2013, 4(4): 11-16.
[18] 宋晋阳, 叶红齐, 董虹,等. 正极材料LiNi1/3Co1/3Mn1/3]O2的Mg掺杂及电化学性能[J]. 有色金属科学与工程,2013, 4(3): 30-33.
[19] JANG Y II, CHIANG Y M. Stability of the monoclinic and orthorhombic, phases of LiMnO2 with temperature, oxygen partial pressure and Al doping[J]. Solid State Ionics, 2000, 130: 53-59.
[20] WANG G X, BEWLAY S, YAO J, et al. Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 189-194.
[21] SHI S R, IZUMI N, TOSHIO T. Effect of the elevated temperature on the local structure of lithium manganese oxide studied by in situ XAFS analysis[J]. Journal of Power Sources, 1999, 81-82: 571-574.
[22] LIU Y J, LI X H, GUO H J, et al. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature[J]. Journal of Power Sources, 2009, 189(1): 721-725.
[23] IDEMOTO Y, NARAI H, KOURA N. Crystal structure and cathode performance on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries[J]. Journal of Power Sources, 2003, 119/120/121: 125-129.