|本期目录/Table of Contents|

[1]刘文兵,李亮,刘桂成,等.钙钛矿太阳能电池稳定性研究进展[J].有色金属科学与工程,2017,(02):31-42.[doi:10.13264/j.cnki.ysjskx.2017.02.006]
 LIU Wenbing,LI Liang,LIU Guicheng,et al.Research progress on stability of perovskite solar cells[J].,2017,(02):31-42.[doi:10.13264/j.cnki.ysjskx.2017.02.006]
点击复制

钙钛矿太阳能电池稳定性研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2017年02期
页码:
31-42
栏目:
出版日期:
2017-03-30

文章信息/Info

Title:
Research progress on stability of perovskite solar cells
作者:
刘文兵李亮刘桂成王新东
北京科技大学冶金与生态工程学院,北京 100083
Author(s):
LIU Wenbing LI Liang LIU Guicheng WANG Xindong
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
关键词:
光伏材料能量转换效率稳定性CH3NH3PbI3界面
分类号:
TM914.4
DOI:
10.13264/j.cnki.ysjskx.2017.02.006
文献标志码:
A
摘要:
近几年,基于有机-无机杂化的钙钛矿太阳能电池成为光伏材料领域的研究热点.同时作为新型太阳能电池,钙钛矿太阳能电池受到科学家的广泛关注.目前在实验室制备的电池能量转换效率已经超过21 %.但是此类太阳能电池的稳定性存在很大问题,如果不能得到有效解决,必然会阻碍其产业化的进程.这几年关于如何提升钙钛矿太阳能电池稳定性方面的研究不断增多.文章归纳关于钙钛矿太阳能电池稳定性方面研究的最新进展.以CH3NH3PbI3为对象,对其物理、化学方面的稳定性问题以及整个电池器件内各层之间存在的界面稳定性问题进行阐述.最后回顾钙钛矿太阳能电池发展历程,对钙钛矿太阳能电池稳定性问题进行总结并从实际应用角度展望未来该领域的发展方向.

参考文献/References:

[1] 陈苗苗, 万丽, 孔梦琴,等. 杂化钙钛矿太阳能电池光吸收层薄膜致密性对其效率影响的研究进展[J].电子元件与材料, 2016, 35(9): 1-7.
[2] AKIHIRO K, KENJIRO T, YASUO S,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
[3] IM J H, LEE C R, LEE J W, et al. 6.5 % Efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011(3): 4088-4093.
[4] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %[J]. Scientific Reports, 2012, 2(8):1-7.
[5] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.
[6] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solarcells[J]. Science, 2014, 345: 542-546.
[7] 汪金良,吴艳新,张文海. 铅冶炼技术的发展现状及旋涡闪速炼铅工艺[J].有色金属科学与工程, 2011, 2(1): 14-18.
[8] 余厚福. 提高铅锌回收率选矿实践[J].有色金属科学与工程,2015, 6(2): 111-115.
[9] 齐超, 刘诚. 江西某铅锌银复杂多金属矿综合回收试验研究[J].有色金属科学与工程, 2016, 7(1): 80-88.
[10] 赵雨, 李惠,关雷雷,等. 钙钛矿太阳能电池技术发展历史与现状[J]. 材料导报A, 2015, 29(6): 17-18.
[11] BI D Q, TRESS W, DAR M, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Science Advances, 2016(2): e1501170.
[12] LI C, LU X G, DING W Z. et al. Formability of ABX3(X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallogr, 2008, 64: 702-707.
[13] LUO S Q, WALID A D. Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design[J]. Journal of Materials Chemistry A, 2015, 3(17): 8992-9010.
[14] EPERON G E,STRANKS S D,MENELAOU C,et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014(7): 982-988.
[15] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1-micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341-344.
[16] CHEN J D, CUI C, LI Y Q, et al. Single-junction polymer solar cells exceeding 10 % power conversion efficiency[J]. Advanced Materials, 2015, 27(6): 1035-1041.
[17] SNAITH H J. Perovskites: the emergence of a new era for low-cost, high efficiency solar cells[J]. Journal of Physical Chemistry Letters, 2013, 21(4): 3623-3630.
[18] LIU M, JOHNSTON M B, SNAITH H J, Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[19] HAN Y, MEYER S, DKHISSI Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. Journal of Materials Chemistry A, 2015, 15(3): 8139-8147.
[20] SEVERIN N H, TOMAS L, GILES E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14(10): 5561-5568.
[21] ZHANG M, YU H, YUN J H,et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter[J]. Chemistry, 2015, 21(1): 434-439.
[22] SONG J, ZHENG E, BIAN J, et al. Low temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 20(3): 10837-10844.
[23] KIM J H, LIANG P W, WILLIAMS S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials, 2015, 27(4): 695-701.
[24] NIU G, GUO X, WANG L. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 17(3): 8970-8980.
[25] YANG J, SIEMPELKAMP B D, LIU D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955-1963.
[26] SUPASAI T, RUJISAMPHAN N, ULLRICH K,et al. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers[J]. Applied Physics Letters, 2013, 103(18): 183-906.
[27] YANG W S, NOH J H, JEON N J, et al. High performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[28] CONSTANTINOS C S, CHRISTOS D M, MERCOURI G K ,et al. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistey, 2013, 52(15): 9019-9038.
[29] PHILIPPE B, PARK B W, JOHAN O, et al. Chemical and electronic structur characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation[J]. Chemistry of Materials, 2015,27(5): 1720-1731.
[30] BERT C, JEROEN D, NICOLAS G, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 2015, 5(15): 1500477.
[31] LEONG W L, OOI Z E, SABBA D, et al. Identifying fundamental limitations in halide perovskite solar cells[J]. Advanced Materials, 2016, 28(12): 2439-2445.
[32] SEVERIN N. H, TOMAS L, GILES E. E, et al. Nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano letters, 2014, 14(10): 5561-5568.
[33] JEFFREY A C, PIERRE A. M H, PRASHANT V. K. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 2015, 137(4): 1530-1538.
[34] YANG J L, BRADEN D. S, LIU D Y, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955-1963.
[35] LEGUY A M A, HU Y H, MARIANO C Q, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals and solar cells[J]. Chemistry of Materials, 2015, 27(9): 3397-3407.
[36] HUANG W X, JOSEPH S. M, PRASHANT V. K, et al. Evolution of chemical composition, morphology and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions[J]. Chemistry of Materials, 2016, 28(1): 303-311.
[37] INSUNG H, Inyoung J, Jinwoo L,et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation[J]. ACS Applied Materials & Interface, 2015, 7(31): 17330-17336.
[38] 黄瑞宇, 罗序燕, 赵东方,等. 银掺杂二氧化钛及其光催化性能研究[J]. 有色金属科学与工程, 2016, 7(2): 67-72.
[39] 陈建钗, 薛霜霜. 余长林. 稀土在非TiO2光催化剂的改性研究[J]. 有色金属科学与工程, 2015, 6(1): 99-105.
[40] DONG X, FANG X, LV M H, et al. Method for improving illumination instability of organic-inorganic halide perovskite solar cells[J]. Science Bulletin, 2016, 61(3): 243-251.
[41] TOMAS L, GILES E.E, NAKITA K. N,et al. Stability of metal halide perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(20): 1-23.
[42] ITO S,TANAKA S, MANABE K,et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells[J]. The Journal of Physical Chemistry C, 2014, 118 (30): 16995-17000.
[43] TOMAS L, GILES E, SANDEEP P, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4(1): 94-105.
[44] ARISTIDOU N, IRENE S M, THANA C, et al.The Role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers[J]. Angewandte Chemie International Edition, 2015, 54(28): 8208-8212.
[45] BRYANT D, ARISTIDOU N, PONT S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy Environmental Science, 2016, 9(5): 1655-1660.
[46] JUN H N, SANG H I, JIN H H, et al. Chemical management for colorful, effient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.
[47] TAI Q D, YOU P, SANG H Q,et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity[J]. Nature communications, 2016(7): 1-8.
[48] GUARNERA S, ABATE A, ZHANG W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer[J]. Journal of Physical Chemistry Letters, 2015, 6(3): 432-437.
[49] LI Y W, ZHAO Y, CHEN Q, et al.Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(49): 15540-15547.

相似文献/References:

[1]刘文兵,李亮,刘桂成,等.钙钛矿太阳能电池稳定性研究进展[J].有色金属科学与工程,2017,(02预):71.
 LIU Wenbing,LI Liang,LIU Guicheng,et al.Research Progress on the Stability of Perovskite Solar Cells[J].,2017,(02):71.

备注/Memo

备注/Memo:
收稿日期:2016-09-21基金项目:国家自然科学基金资助项目(91010002);北京自然科学基金资助项目(2122041)通信作者:王新东(1961- ),男,教授,博导,主要从事能源与电化学等方面的研究,E-mail: sqzhao@ustb.edu.cn.
更新日期/Last Update: 2017-04-28