|本期目录/Table of Contents|

[1]张万龙,黄正欣,左海滨,等.熔融气化炉填充床冶炼特征的数值模拟[J].有色金属科学与工程,2017,(06):7-12.[doi:10.13264/j.cnki.ysjskx.2017.06.002]
 ZHANG Wanlong,HUANG Zhengxin,ZUO Haibin,et al.Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J].,2017,(06):7-12.[doi:10.13264/j.cnki.ysjskx.2017.06.002]
点击复制

熔融气化炉填充床冶炼特征的数值模拟(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2017年06期
页码:
7-12
栏目:
出版日期:
2017-11-30

文章信息/Info

Title:
Numerical simulation of smelting characteristics in moving-bed of melter gasifier
作者:
张万龙黄正欣左海滨赵世强
北京科技大学钢铁冶金新技术国家重点实验室,北京 100083
Author(s):
ZHANG Wanlong HUANG Zhengxin ZUO Haibin ZHAO Shiqiang
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
关键词:
熔融气化炉填充床冶炼特征数值模拟
分类号:
TF531
DOI:
10.13264/j.cnki.ysjskx.2017.06.002
文献标志码:
A
摘要:
熔融气化炉填充床是将预还原炉料熔炼为液态铁水,并利用块煤裂解生成大量还原煤气供预还原竖炉使用的主要冶炼场所. 文章建立了熔融气化炉填充床一维稳态数学模型,数值模拟分析了填充床内还原煤气与固体炉料的温度及组分分布特征. 结果表明:由于海绵铁与块煤及熔剂的温差较大,固相间辐射热传递使得海绵铁温度呈先降低后升高的变化趋势,随着固体炉料的下降,海绵铁逐渐熔炼为液态铁水,至填充床底部,铁水温度可达1 774 K. 另一方面,随着煤气流的上升,块煤热解使得H2体积浓度大幅提高,熔剂分解及海绵铁还原亦导致CO2体积浓度逐渐增大,至填充床上部,CO体积浓度稳定于71.8 %.

参考文献/References:

[1] DELPORT H M W. The COREX process[J]. Ironmaking & SteelMaking, 1992, 19(3): 183-189.
[2] 吴俐俊, 苏允隆. COREX炼铁法的现状及发展前景[J]. 钢铁, 1996, 31(9): 69-74.
[3] 张殿伟, 郭培民, 赵沛. 现代炼铁技术进展[J]. 钢铁钒钛, 2006, 27(2): 26-32.
[4] 杜开平, 赵世强, 吴胜利. 熔融气化炉风口回旋区冶炼特征的数值模拟研究[J]. 有色金属科学与工程, 2017, 8(2): 8-13.
[5] LEE S C, SHIN M K, JOO S, et al. A development of computer model for simulating the transport phenomena in corex melter gasifier[J]. ISIJ International, 1999, 39(4): 319-328.
[6] LEE S C, SHIN M K, JOO S, et al. The effects of operational parameters on the transport phenomena in COREX melter Gasifier[J]. ISIJ International, 2000, 40(11): 1073-1079.
[7] PAL S, LAHIRI A K. Mathematical model of COREX melter gasifier: Part I. steady-state model[J]. Metallurigal and Materials Transactions B, 2003, 34B(2): 103-114.
[8] AUSTIN P R, NOGAMI H, YAGI J. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997, 37(5): 458-467.
[9] AUSTIN P R, NOGAMI H, YAGI J. A mathematical model for blast furnace reaction analysis based on the four fluid model[J]. ISIJ International, 1997, 37(8): 748-755.
[10] HARA Y, TSUCHIYA M, KONDO S. Intraparticle temperature of iron-oxide pellet during the reduction[J]. Tetsu-to-Hagané, 1974, 60(9): 1261-1270.
[11] MUCHI I. Mathematical model of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1967, 7(2): 223-236.
[12] KUWABARA M, HSIEH Y S, MUGHI I. A kinetic model of coke combustion in the tuyere zone of blast furnace[J]. Tetsu-to-Hagané, 1980, 66(13): 1918-1927.
[13] AOKI H, NOGAMI H, TSUGE H, et al. Simulation of transport phenomena around the raceway zone in the blast furnace with and without pulverized coal injection[J]. ISIJ International, 1993, 33(6): 646-656.
[14] SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2): 728-738.
[15] 熊林, 朱锦明, 李建. COREX-3000风口破损的原因分析和对策[J]. 宝钢技术, 2011(6): 24-28.
[16] QU Y, ZOU Z, XIAO Y. A comprehensive static model for COREX process[J]. ISIJ international, 2012, 52(12): 2186-2193.
[17] YAMAMOTO T, UJISAWA Y, ISHIDA H, et al. Operation and design of scrap melting process of the packed bed type[J]. ISIJ International, 1999, 39(7): 705-714.
[18] PERRY R H, GREEN D W, MALONEY J O. Perry’s chemical engineers’ handbook[M]. New York: McGraw-Hill, 1997.
[19] SHEN W, WU S L, KOU M Y, et al. The establishment of a static model based on the measured heat loss for corex process[J]. Journal of Iron and Steel Research, International, 2015, 22(3): 200-206.
[20] SHEN W, WU S L, DU K P, et al. Measurements of heat loss and its distribution for COREX-3000 ironmaking process[J]. Metallurgical Research & Technology, 2014, 111(2): 75-84.

相似文献/References:

[1]刘肖,刘起航,湛文龙,等.熔融气化炉内块煤成焦后粉化现象的相关研究[J].有色金属科学与工程,2014,(03):21.[doi:10.13264/j.cnki.ysjskx.2014.03.004]
 LIU Xiao,LIU Qihang,ZHAN Wenlong,et al.Pulverization phenomena of coke formed by lump coal pyrolysis in melter gasifier[J].,2014,(06):21.[doi:10.13264/j.cnki.ysjskx.2014.03.004]
[2]刘肖,刘起航,湛文龙,等.熔融气化炉内块煤成焦后粉化现象的相关研究[J].有色金属科学与工程,2016,(05预):945.
 LIU Xiao,LIU Qi-hang,ZHAN Wen-long,et al.Investigation on pulverization phenomena of coke formed by lump coal pyrolysis in melter gasifier[J].,2016,(06):945.
[3]杜开平,等.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程,2017,(02预):21.
 DU Kaiping,ZHAO Shiqiang,et al.Numerical Simulation of Smelting Characteristics around Raceway in Melter Gasifier[J].,2017,(06):21.
[4]杜开平,赵世强,吴胜利.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程,2017,(02):8.[doi:10.13264/j.cnki.ysjskx.2017.02.002]
 DU Kaiping,ZHAO Shiqiang,WU Shengli.Numerical simulation of smelting characteristics around raceway in melter gasifier[J].,2017,(06):8.[doi:10.13264/j.cnki.ysjskx.2017.02.002]
[5]张万龙,黄正欣,左海滨,等.熔融气化炉填充床冶炼特征的数值模拟研究[J].有色金属科学与工程,2017,(06):25.
 ZHANG Wanlong,HUANG zhengxin ZUO Haibin,ZHAO Shiqiang.Numerical Simulation of Smelting Characteristics in moving bed of Melter Gasifier[J].,2017,(06):25.

备注/Memo

备注/Memo:
收稿日期:2017-05-02
基金项目:国家重点研发项目资助(2016YFB0601304)
通信作者:左海滨(1976- ),男,教授,博士生导师,主要从事冶金能源高效利用研究,E-mail:zuohaibin@ustb.edu.cn.
更新日期/Last Update: 2017-12-30