|本期目录/Table of Contents|

[1]浓度.CP熔盐电化学方法检测LiCl-KCl熔盐La(Ⅲ)浓度[J].有色金属科学与工程,2017,(06):1-6.
 Determination of La.Determination of La[J].,2017,(06):1-6.
点击复制

CP熔盐电化学方法检测LiCl-KCl熔盐La(Ⅲ)浓度(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2017年06期
页码:
1-6
栏目:
出版日期:
2017-11-30

文章信息/Info

Title:
Determination of La
作者:
浓度
(江西理工大学冶金与化学工程学院,江西 赣州 341000 )
Author(s):
Determination of La
() in LiCl-KCl eutectic by CP electrochemical method LI LinshanYANG ShaohuaZHAO YujuanWANG Zhaowen (School of Metallurgy and Chemical Engineering Jiangxi University of Science and Technology, Ganzhou 341000china)
关键词:
熔盐电化学离子浓度检测计时电位法LiCl-KCl熔盐
分类号:
O614.33;O614.33+1
DOI:
-
文献标志码:
A
摘要:
在773 K氩气环境下,采用CP熔盐电化学方法对LiCl-KCl电解质体系中不同组分LaCl3(0.98 %、2.0 %和3.3 %)进行La离子浓度检测.研究结果表明:La(Ⅲ)在钨电极上相对于银/氯化银参比电极的还原析出电位在-2.0~-2.2 V 左右,通过阴极峰电流值、过渡时间与深度三者关系计算,773 K下La离子扩散系数在1.29×10-5~5.42×10-5 cm 2/s之间.通过对比计时电位法(CP)和电感耦合等离子体原子发射光谱法(ICP)检测的La离子浓度结果,相对误差依次为1.25 %、1.11 %和1.72 %.LiCl-KCl熔盐中La电沉积的峰值电流和过渡时间平方根乘积与浓度呈良好线性关系,说明以CP熔盐电化学方法检测离子浓度可行性好

参考文献/References:

[1].INOUE T, KOCH L. Development of pyroprocessing and its future direction[J]. Nuclear Engineering and Technology, 2008, 40(3):183.
[2].YOO J H, SEO C S, KIM E H, et al. A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels[J]. Nuclear Engineering and Technology, 2008, 40(7):581-592.
[3].CHANG Y I. The integral fast reactor[J]. Nuclear Technology, 1989, 88(2):129-138.
[4].LAMBERTIN D, LACQUEMENT J, SANCHEZ S, et al. Determination of the solubility product of plutonium sesquioxide in the NaCl + CaCl 2 eutectic and calculation of a potential–pO 2?diagram[J]. Electrochemistry Communications, 2002, 4(5):447-450.
[5].杨少华,王君,谢宝如,等. 低品位钨渣处理工艺[J]. 有色金属科学与工程,2015,6(6):29-32.
[6].黄丽华,张涛,章晓波,等. 热处理和挤压对WE53镁合金组织与力学性能的影响[J]. 有色金属科学与工程,2014(6):67-70.
[7].PARK Y J, BAE S E, CHO Y H, et al. UV–vis absorption spectroscopic study for on-line monitoring of uranium concentration in LiCl–KCl eutectic salt[J]. Microchemical Journal, 2011, 99(2):170-173.
[8].CHO Y H, KIM T J, BAE S E, et al. Electronic absorption spectra of U (III) ion in a LiCl–KCl eutectic melt at 450 ° C[J]. Microchemical Journal, 2010, 96(2):344-347.
[9].KIM T J, CHO Y H, CHOI I K, et al. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide[J]. Journal of Nuclear Materials, 2008, 375(2):275-279.
[10].任春燕,李冬梅,张爱荣,等.光谱法分析TC11钛合金用标样化学成分控制[J].中国有色金属学报, 2010(s1):960-964.
[11].张密林,陈丽军,韩伟,等.Pb(II)在LiCl-KCl-MgCl2-PbCl2熔盐体系中的电化学行为[J].中国有色金属学报(英文版), 2012, 22(3):711-716.
[12].SAMIN A, WANG Z, LAHTI E, et al. Estimation of key physical properties for LaCl 3 in molten eutectic LiCl–KCl by fitting cyclic voltammetry data to a BET-based electrode reaction kinetics model[J]. Journal of Nuclear Materials, 2016, 475:149-155.
[13].TYLKA M M, WILLIT J L, PRAKASH J, et al. Method development for quantitative analysis of actinides in molten salts[J]. Journal of The Electrochemical Society, 2015, 162(9):H625-H633.
[14].TYLKA M M, WILLIT J L, PRAKASH J, et al. Application of voltammetry for quantitative analysis of actinides in molten salts[J]. Journal of The Electrochemical Society, 2015, 162(12):H852-H859.
[15].IIZUKA M, INOUE T, SHIRAI O, et al. Application of normal pulse voltammetry to on-line monitoring of actinide concentrations in molten salt electrolyte [J]. Journal of Nuclear Materials, 2001, 297(1):43-51.
[16].WANG Z, RAPPLEYE D, YANG C S, et al. Application of voltammetry for electroanalytical measurement of concentrations in LaCl3-MgCl2 mixtures in eutectic LiCl-KCl[J]. Journal of The Electrochemical Society, 2016, 163(10):H921-H926.
[17].PAEK S, KIM T J, KIM G Y, et al. Determination of lanthanide ions in a LiCl-KCl molten salt by square wave voltammetry[J]. International Journal of Electrochemical Science, 2014, 9(9):4925-4931.
[18].KEITHLEY R B, WIGHTMAN R M, HEIEN M L. Multivariate concentration determination using principal component regression with residual analysis[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9):1127-1136.

相似文献/References:

[1]舒庆*,侯小鹏,刘峰生,等.稀土镧改性磷钨杂多酸盐催化油酸与甲醇酯化反应合成生物柴油活性研究[J].有色金属科学与工程,2016,(05预):95.
 SHU Qing,HOU Xiao-peng,LIU Feng-sheng,et al.Studies on the Catalytic Activity of La-Modified Phosphotungstic Heteropoly Acid Salt in the Synthesis of Biodiesel from the Esterification of Methanol and Oleci Acid[J].,2016,(06):95.
[2]舒庆,侯小鹏,刘峰生,等.稀土镧改性磷钨杂多酸盐催化油酸与甲醇酯化反应合成生物柴油活性研究[J].有色金属科学与工程,2016,(03):131.[doi:10.13264/j.cnki.ysjskx.2016.03.023]
 SHU Qing,HOU Xiaopeng,LIU Fengsheng,et al.Catalytic activity of La-modified phosphotungstic heteropoly acid salt in synthesis of biodiesel from esterification of methanol and oleci acid[J].,2016,(06):131.[doi:10.13264/j.cnki.ysjskx.2016.03.023]
[3]李林山,杨少华,赵宇娟,等.CP熔盐电化学方法检测LiCl-KCl熔盐La(Ⅲ)浓度[J].有色金属科学与工程,2017,(06):1.[doi:10.13264/j.cnki.ysjskx.2017.06.001]
 LI Linshan,YANG Shaohua,ZHAO Yujuan,et al.Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method[J].,2017,(06):1.[doi:10.13264/j.cnki.ysjskx.2017.06.001]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-11-01