|本期目录/Table of Contents|

[1]王德志a,b,张宇晴a,等.微波快速熔渗制备钼铜复合材料[J].有色金属科学与工程,2018,(03预):41-45.
 WANG Dezhia,b,ZHANG Yuqinga,et al.Mo-Cu Alloy Obtained Rapidly by Microwave Infiltration[J].,2018,(03预):41-45.
点击复制

微波快速熔渗制备钼铜复合材料(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2018年03期预
页码:
41-45
栏目:
出版日期:
2018-08-20

文章信息/Info

Title:
Mo-Cu Alloy Obtained Rapidly by Microwave Infiltration
作者:
王德志ab张宇晴ab段柏华ab
( 中南大学, a. 材料科学与工程学院; b. 有色金属材料科学与工程教育部重点实验室, 长沙 410083)
Author(s):
WANG Dezhiab ZHANG Yuqingab DUANBohuaab
(a. School of Material Science and Engineering; b. Key Laboratory of Nonferrous Material Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China)
关键词:
微波熔渗常规烧结钼骨架Mo-Cu复合材料
分类号:
TF123.12
DOI:
-
文献标志码:
A
摘要:
通过微波快速熔渗制备钼铜复合材料,探究预烧结骨架、熔渗起始位置及熔渗温度对熔渗效果的影响。结果表明,100 MPa压制生坯在1400 ℃下常规烧结1.5 h具有理想孔隙率。当有氢氩气氛保护的情况下,底部渗铜可以使铜相分布更加均匀。在1250 ℃下保温1 h微波熔渗后的钼铜复合材料即具有较优良的综合性能,和较均匀的显微结构。微波熔渗极大的缩短熔渗时间,可以节约生产能源和成本,是一种很好的加工方式。

参考文献/References:

[1] 孙永伟, 刘勇. Mo-Cu复合材料的研究进展[J]. 热处理, 2012, 27(2): 16-18.

[2] JOHN L J . Activated liquid phase sintering of W–Cu and Mo–Cu[J]. Int. Journal of Refractory Metals and Hard Materials, 2015, 53: 80–86.

[3] 吕大铭. 钼铜材料的开发与应用[J]. 粉末冶金工业, 2000, 10(6): 30-33.

[4] 韩胜利, 宋月清, 崔舜. Mo-Cu合金片的制备及性能研究[J]. 粉末冶金工业, 2007, 17 (5): 40-45.

[5] FAN J L, CHEN Y B, L T, et al. Sintering Behavior of Nanocrystalline Mo-Cu Composite Powders [J]. Rare Metal Materials and Engineering, 2009, 38(10): 1693-1697.

[6] PAOLA A B, BENJAMIN S, RODRIGO H P. Liquid phase sintering of mechanically alloyed Mo-Cu powders[J]. Materials Science & Engineering A, 2017, 701: 237–244.

[7] AYDINYAN S V, KIRAKOSYAN H V, KHARATYAN S L, Cu–Mo composite powders obtained by combustion–co-reduction process[J]. Int. Journal of Refractory Metals and Hard Materials, 2016, 54: 455–463.

[8] 董小嘉. 微波辅助湿化学法制备纳米钼铜粉末及其烧结性能研究[D]. 长沙: 中南大学, 2014.

[9] 韩胜利, 宋月清, 崔舜. 压制烧结法制备钼铜合金中的缺陷分析[J]. 粉末冶金技术, 2009, 27 (2): 99-103.

[10] 王德志, 尹邦柱, 孙翱魁等. 甘氨酸硝酸盐法制备超细Mo-Cu粉末及烧结[J]. 有色金属科学与工程, 2016, 7 (2): 19-24.

[11] 古一, 姜国圣, 王志法等. 熔渗时间对Mo70-Cu合金致密化的影响[C]. //材料科学中数学应用研讨会. 保定: 河北农业大学, 2010.

[12] IBRAHIM H, AZIZ A , RAHMAT A , et al. Effects of Cobalt Addition and Temperature on Microstructure and Density of W-25Cu Composites Prepared via Liquid Infiltration[J]. Advanced Materials Research, 2012, 626 : 430-435.

[13] 阮建明, 黄培云. 粉末冶金原理[M]. 北京: 机械工业出版社, 2012: 291-304.

[14] KHALED D E, NOVAS N, GAZQUEZ J A . Microwave dielectric heating: Applications on metals processing[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2880–2892.

[15] THOSTENSON E T, CHOU T W. Microwave processing: fundamentals and applications[J]. Composites: Part A, 1999, 30: 1055–1071.

[16] RODIGER K, DREYER K, GERDES T. Microwave sintering of hardmetals[J]. International Journal of Refractory Metals & Hard Materials, 1998, 16: 409-416.

[17] GUO Y L , YI J H, LUO S D . Fabrication of W–Cu composites by microwave infiltration[J]. Journal of Alloys and Compounds, 2010, 492: L75–L78.

[18] XU L, YAN M, XIA Y. Influence of copper content on the property of Cu–W alloy prepared by microwave vacuum infiltration sintering[J]. Journal of Alloys and Compounds, 2014, 592: 202–206.

[19] 李晓伟, 白培康, 刘斌. 高温钼骨架渗铜工艺参数分析[J]. 新技术新工艺, 2007, 9: 54-56.

相似文献/References:

[1]王德志a,b,张宇晴a,等.微波快速熔渗制备钼铜复合材料[J].有色金属科学与工程,2018,(03):11.[doi:10.13264/j.cnki.ysjskx.2018.03.003]
 WANG Dezhia,b,ZHANG Yuqinga,et al.Mo-Cu Alloy Obtained Rapidly by Microwave Infiltration[J].,2018,(03预):11.[doi:10.13264/j.cnki.ysjskx.2018.03.003]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-06-04