[1] CARON P, KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications [J]. Aerospace Science Technology, 1999, 3: 513-523.
[2] WALSTON S, CETEL A, MACKAY R, et al. Joint development of a fourth generation single crystal superalloy [C]// Superalloys2004. Pennsylvania, TMS, 2004: 15-24.
[3] RGENC D, VERNAULT C, DESVALLEES Y, et al. MC-NG: Generation single crystal superalloy for future aeronautical turbine blades and vanes [C]. Superalloy 2000, Warrendale, TMS, 2000: 829–837.
[4] 刘世忠,史振学,熊继春,等. 一种单晶高温合金的组织和持久性能[J]. 有色金属科学与工程,2017, 8(1): 118-121.
[5] WALSTON W S, O′HARA K, ROSS E W, et al. RenéN6: Third generation single crystal superalloy [C]. Superalloys1996. Warrendale, TMS, 1996: 27-34.
[6] ERICKSON G L. The development and application of CMSX-10 [C]// Superalloys1996. Warrendale, TMS, 1996: 35-44.
[7] YEH A C, TIN S. Effect of Ru on the high temperature phase stability of Ni-base single crystal superalloys [J]. Metallurgical and Materials Transactions A, 2006, 37: 2621-2631.
[8] ACHARYA M V, FUCHS G E. The effect of long term thermal exposures on the microstructure and properties of CMSX-10 single crystal superalloys [J]. Materials Science and Engineering A, 2004, 381: 143-153.
[9] SATO A, HARADA H, YOKOKAWA T, et al. The effect of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys [J]. Scripta Materialia, 2006, 54: 1679-1684.
[10] 任英磊,金涛,管恒荣,等. 高温长期时效对镍基单晶高温合金γ′相形貌的影响[J]. 机械工程材料,2004, 28(3): 10-12.
[11] HOBBS R A, ZHANG L, RAE C M F, et al. The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal suepralloy [J]. Materials Science and Engineering A, 2008, 489: 65-76.
[12] AGHAIE-KHAFRI M, HAJJAVADY M. The effect of thermal exposure on the properties of a Ni-base superalloy [J]. Materials Science and Engineering A, 2008, 487: 388-393.
[13] SHI Z X, LI J R, LIU S Z. Effect of long term aging on microstructure and stress rupture properties of a Nickel based single crystal superalloy [J]. Progress in Natural Science: Materials International, 2012, 22(5): 426-4323.
[14] RAE C M F, KARUNARATNE M S A, SMALL C J, BROOMFIELD R W, JONES C N, Reed R C. Topologically close packed phases in an experimental Rhenium-containing single crystal superalloy[C]// Pollock T M, KISSINGER R D, BOWMAN R R, GREEN K A, MCLEAN M, OLSON S, SCHIRRA J J. Superalloys. Warrendale, PA: TMS, 2000: 767-777.
[15] 金海鹏,李嘉荣. 第二代单晶高温合金DD6长期时效后的拉伸性能 [J]. 材料工程, 2007,(3): 22-23.
[16] 侯介山, 郭建亭, 周兰章. K44镍基高温合金长期时效过程中γ’相粗化对拉伸性能的影响[J]. 金属学报, 2006, 42(5): 481-486.
[17] WANG W Z, JIN T, LIU J L, et al. Role of Re and Co on microstructures and γ’ coarsening in single crystal superalloys [J]. Materials Science and Engineering A, 2008, 479: 148-156.
[18] NEUMEIER S, PYCZAK F, G?KEN M. The influence of Ruthenium and Rhenium on the local properties of the γ- and γ′-phase in Nickel-base superalloys and their consequences for alloy behavior [C]// REED R C, GREEN K A, CARON P, GABB P, FAHRMANN G, HURON E S, WOODARD S A. Superalloys. Pennsylvania, PA: TMS, 2008: 109-119.
[19] RAE C.M F, KARUNARATNE M S A, SMALL C J, et al. Topologically close packed phases in an experimental Rhenium-containing single crystal superalloy [C]. Superalloys2000. Warrendale, TMS, 2000: 767-776.
[20] JACKON J J, DONACHIE M J, HENRICKS R J. Effect of amount of fine γ′ particle on creep property for DS MarM200 +Hf superalloy [J]. Metallurgical Transaction A, 1977, 8(10): 1-9.
[21] HINO T, KOBAYASHI T, KOIZUMI Y. Development of a new single crystal superalloy for industrial gas turbines [C]. Superalloys 2000. Warrendale, TMS, 2000: 729-736.
[1]刘世忠,史振学,熊继春,等.一种单晶高温合金的组织和持久性能研究[J].有色金属科学与工程,2017,(01预):36.
LIU Shizhong,SHI Zhenxue,XIONG Jichun,et al.Microstructure and Stress Rupture Properties of a Single Crystal Superalloy[J].,2017,(04):36.
[2]刘世忠,史振学,熊继春,等.一种单晶高温合金的组织和持久性能[J].有色金属科学与工程,2017,(01):118.[doi:10.13264/j.cnki.ysjskx.2017.01.020]
LIU Shizhong,SHI Zhenxue,XIONG Jichun,et al.Microstructure and stress rupture properties of a single crystal superalloy[J].,2017,(04):118.[doi:10.13264/j.cnki.ysjskx.2017.01.020]
[3]史振学,赵金乾,刘世忠.表面缺陷对单晶高温合金高周疲劳性能的影响[J].有色金属科学与工程,2018,(06预):21.
SHI Zhenxue,ZHAO Jinqian,LIU Shizhong.Effect of surface defects on high cycle fatigue properties of a single crystal superalloy[J].,2018,(04):21.
[4]史振学,赵金乾,刘世忠.表面缺陷对单晶高温合金高周疲劳性能的影响[J].有色金属科学与工程,2018,(06):50.[doi:10.13264/j.cnki.ysjskx.2018.06.008]
SHI Zhenxue,ZHAO Jinqian,LIU Shizhong.Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J].,2018,(04):50.[doi:10.13264/j.cnki.ysjskx.2018.06.008]
[5]史振学,刘世忠,赵金乾.Mo含量对第四代单晶高温合金组织及稳定性的影响[J].有色金属科学与工程,2019,(01):67.[doi:10.13264/j.cnki.ysjskx.2019.01.011]
SHI Zhenxue,LIU Shizhong,ZHAO Jinqian.Influence of Mo content on microstructure and stability of the fourth-generation single crystal superalloys[J].,2019,(04):67.[doi:10.13264/j.cnki.ysjskx.2019.01.011]
[6]史振学,赵金乾.一种单晶高温合金不同温度的高周疲劳性能[J].有色金属科学与工程,2019,(03):1.
SHI Zhenxue,ZHAO Jinqian.High cycle fatigue properties of a single crystal superalloy at different temperature[J].,2019,(04):1.
[7]史振学,刘世忠.Al含量对镍基单晶高温合金组织和持久性能的影响[J].有色金属科学与工程,2019,(02):77.[doi:10.13264/j.cnki.ysjskx.2019.02.011]
SHI Zhenxue,LIU Shizhong.Influence of Al content on microstructure and stress rupture properties a Ni-base single crystal superalloy[J].,2019,(04):77.[doi:10.13264/j.cnki.ysjskx.2019.02.011]
[8]史振学,赵金乾.一种单晶高温合金不同温度的高周疲劳性能[J].有色金属科学与工程,2019,(03):58.[doi:10.13264/j.cnki.ysjskx.2019.03.010]
SHI Zhenxue,ZHAO Jinqian.High cycle fatigue properties of a single crystal superalloy at different temperatures[J].,2019,(04):58.[doi:10.13264/j.cnki.ysjskx.2019.03.010]
[9]史振学,岳晓岱,王志成,等.Re含量对单晶高温合金组织和拉伸性能的影响[J].有色金属科学与工程,2020,(04):113.[doi:10.13264/j.cnki.ysjskx.2020.04.017]
SHI Zhenxue,YUE Xiaodai,WANG Zhicheng,et al.Effects of Re content on the microstructure and tensile properties
of a single crystal superalloy[J].,2020,(04):113.[doi:10.13264/j.cnki.ysjskx.2020.04.017]