|本期目录/Table of Contents|

[1]屈苗a,刘宇b,肖政兵b.铝合金夹杂物基本性质的第一性原理研究[J].有色金属科学与工程,2018,(06):1-10.[doi:10.13264/j.cnki.ysjskx.2018.06.001]
 Qu Miaoa,Liu Yub,Xiao Zhengbingb.A first principle study on the basic properties of inclusions in aluminum alloy[J].,2018,(06):1-10.[doi:10.13264/j.cnki.ysjskx.2018.06.001]
点击复制

铝合金夹杂物基本性质的第一性原理研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2018年06期
页码:
1-10
栏目:
出版日期:
2018-12-25

文章信息/Info

Title:
A first principle study on the basic properties of inclusions in aluminum alloy
作者:
屈苗a刘宇b肖政兵b
a.稻田中学,长沙,410021. b. 中南大学轻合金研究院,长沙,410083
Author(s):
Qu Miaoa Liu Yub Xiao Zhengbingb
(a Daotian Middle School, Changsha, 410021. b Research Institute of Light Alloy, Central South University, Changsha, 410083)
关键词:
第一性原理铝合金夹杂物基本性质
分类号:
TG146
DOI:
10.13264/j.cnki.ysjskx.2018.06.001
文献标志码:
A
摘要:
采用第一性原理计算的方法研究了铝合金基体及常见夹杂物Al2O3、MgO、AlN、TiB2、AlB2、Al4C3的基本性质.形成热的计算结果表明Al2O3最容易形成,其次是MgO,AlB2相对最难形成;Al2O3、AlN、TiB2结合能的绝对值稍微大于其他物相,且TiB2最稳定,AlB2相对最不稳定;TiB2粒子的切变模量、体模量、杨氏模量和硬度均最高,Al4C3与基体硬度最接近,表明TiB2粒子对铝合金强度、刚度、加工性能的影响最大;AlN粒子的各向异性因子最大,其对铝合金各向异性的影响最大,AlB2次之,Al2O3和TiB2粒子对铝合金各向异性程度影响较小;TiB2对铝合金韧性的影响最大,AlN次之,Al4C3对铝合金韧性的影响最小;Al2O3与铝基体之间的相对费米能级差较大,为1.4eV,而AlB2粒子最小,各夹杂物对材料腐蚀性能的影响Al2O3>MgO>TiB2>Al4C3>AlN>AlB2.

参考文献/References:


[1] 刘兵, 彭超群, 王日初, 王小锋, 李婷婷. 大飞机用铝合金的研究现状及展望 [J][J]. 中国有色金属学报, 2010, 20(9):1705-1715.
[2] 方华婵, 陈康华, 巢宏, 陈祥, 叶登峰. Al-Zn-Mg-Cu 系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6):351-358.
[3] 陈亚莉. 铝合金在航空领域中的应用[J]. 有色金属加工, 2003, (02):11-14+17.
[4] 赵维.铝合金中夹杂物研究[D],南宁:广西大学, 2008.
[5] H. TODA, T. KOBAYASHI, A. TAKAHASHI. Mechanical analysis of toughness degradation due to premature fracture of course inclusions in wrought aluminium alloys[J]. Materials Science and Engineering: A, 2000, 280(1):69-75.
[6] 丛红日, 边秀房. 铝合金熔体中夹杂物与含氢量的关系[J]. 特种铸造及有色合金, 2000, (3):21-22
[7] 陈发勤.铝合金新型复合熔体精炼剂制备及应用研究[D],南昌:南昌大学,2011.
[8] 张淑婷, 王磊, 杨晓华, 陆在平. 铝合金熔体净化的研究[J]. 材料导报, 2009, 23(21):43-45,58.
[9] 石宝东, 潘复生, 陈先华, 汤爱涛, 彭建. 铝合金熔体净化工艺的研究进展[J]. 材料导报, 2009, 23(7):45-48,65.
[10] 李杰华, 郝启堂. 铝合金熔体净化技术的现状及其发展趋势[J]. 中国铸造装备与技术, 2005, (6):1-4
[11] KONDO S, TATEISHI K, ISHIZAWA N. Structural Evolution of Corundum at High Temperatures[J]. Japanese Journal of Applied Physics, 2008, 47(47):616-619.
[12] CHEN X, KANG J. The structural properties of wurtzite and rocksalt MgxZn1-xO[J]. Semiconductor Science & Technology, 2008, 23(2):025008.
[13] JIAO Z Y, MA S H, YANG JF. A comparison of the electronic and optical properties of zinc-blende, rocksalt and wurtzite AlN: A DFT study[J]. Solid State Sciences, 2011, 13(2):331-336.
[14] ANISHCHIK V M, DOROZHKIN N N. Electronic Structure of TiB 2 and ZrB 2[J]. Physica Status Solidi, 1990, 160(160):173-177.
[15] KUMAR G S V, MURTY B S, CHAKRABORTY M. Settling behaviour of TiAl3, TiB2, TiC and AlB2 particles in liquid Al during grain refinement[J]. International Journal of Cast Metals Research, 2010, 23(4):193-204.
[16] T.M. GESING, W. JEITSCHKO. Crystal Structure and Chemical Properties of U2Al3C4 and Structure Refinement of Al4C3[J]. Cheminform, 1995, 26(26):196-200.
[17] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B Condensed Matter, 1999, 59(3):1758-1775.
[18] KRESSE G, HAFNER J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. Journal of Physics: Condensed Matter, 1994, 6(40):8245.
[19] ZOPE R R, MISHIN Y. Interatomic potentials for atomistic simulations of the Ti-Al system[J]. Physical Review B, 2003, 68(2):024102.
[20] SHEIN I R, IVANOVSKII A L. Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations[J]. Journal of Physics Condensed Matter, 2008, 20(41):8106-8110.
[21] PENG F, FU H Z, CHENG X L. First-principles calculations of thermodynamic properties of TiB2 at high pressure[J]. Physica B Physics of Condensed Matter, 2007, 400(1):83-87.
[22] SUZUKI M, UENOYAMA T, YANASE A. First-principles calculations of effective-mass parameters of AlN and GaN[J]. Physical Review B Condensed Matter, 1995, 52(11):8132.
[23] MORIWAKE H. First-principles calculation of formation energy of neutral point defects in perovskite-type BaTiO3[J]. International Journal of Quantum Chemistry, 2004, 99(5):824-827.
[24] FU C L, WANG X, YE Y Y, K. HO M. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation[J]. Intermetallics, 1999, 7(2):179-184.
[25] TANAKA I, OBA F, TATSUMI K, KUNISU M, NAKANO M, ADACHI H. Theoretical formation energy of oxygen-vacancies in oxides[J]. Materials Transactions, 2002, 43(7):1426-1429.
[26] ZhANG H L, HAN Y F, WANG J, DAI Y B, SUN B D. An ab initio molecular dynamics study on the structural and electronic properties of AlB2, TiB2 and (Alx,Ti(1?x))B2 in Al–Ti–B master alloys[J]. Journal of Alloys & Compounds, 2014, 585(3):529-534.
[27] JACOBA M H G, SCHMID F R. Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method[J]. Physics & Chemistry of Minerals, 2010, 37(10):721-739.
[28] YAO H, OUYANG L, CHING W Y. Ab Initio Calculation of Elastic Constants of Ceramic Crystals[J]. Journal of the American Ceramic Society, 2010, 90(10):3194-3204.
[29] KULAKOV G I. Simultaneous measurement of the component of the stress and strain tensors and determination of the elastic constants for a rock[J]. Soviet Mining, 1974, 10(6):659-663.
[30] 张彩丽.合金元素对Mg-Li-X强/韧化作用机制的第一性原理研究[D],太原:太原理工大学,2011.
[31] DONG N, QIAO Y, ZHANG C, WANG J, FAN G, FANG X, HAN P. Combined experiment and first-principles study of the formation of the Al2O3 layer in alumina-forming austenitic stainless steel[J]. Rsc Advances, 2017, 7(26):15727-15734.
[32] GHEBOULI B, GHEBOULI M A, FATMI M, LOUAIL L, CHIHI T, BOUHEMADOU A. First-principles calculations of structural, electronic, elastic and thermal properties of phase M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W)[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3):915-925.
[33] 陈丽. FCC晶体弹性常数的分子动力学模拟及其适用性[J]. 机械工程学报, 2005, 41(9):46-50.
[34] YAO H , OUYANG L , CHING W Y. Ab initio calculation of elastic constants of ceramic crystals[J]. Journal of the American Ceramic Society, 2007, 90(10):3194-3204.
[35] S SHANG, WANG Y, LIU Z K. First-principles elastic constants of α- and θ-Al2O3[J]. Applied Physics Letters, 2007, 90(10):101909 - 101909-101903.
[36] GLADDEN J R, SO J H, MAYNARD J D, SAXE P W, PAGE Y L. Reconciliation of ab initio theory and experimental elastic properties of Al2O3[J]. Applied Physics Letters, 2004, 85(3):392 - 394.
[37] KISI E H, HOWARD C J, ZHANG J. Verification of the elastic constants for -Al 2 O 3 using high-resolution neutron diffraction[J]. J. Appl. Cryst., 2011, 44(1):216-218.
[38] BALTACHE H, KHENATA R, SAHNOUN M, DRIZ M, ABBAR B, BOUHAFS B. Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO, CaO and SrO[J]. Physica B: Condensed Matter, 2004, 344(1–4):334-342.
[39] MARINELLI F, LICHANOT A. Elastic constants and electronic structure of alkaline-earth chalcogenides. Performances of various hamiltonians[J]. Chemical Physics Letters, 2003, 367(3):430–438.
[40] ZHANG H, BUKOWINSKI M S. Modified potential-induced-breathing model of potentials between close-shell ions[J]. Phys. Rev. B, 1991, 44(6):2495-2503.
[41] PENG F, CHEN D, Fu H, CHENG X. The phase transition and the elastic and thermodynamic properties of AlN: First principles[J]. Physica B: Condensed Matter, 2008, 403(23–24):4259-4263.
[42] HAMA R K. First-principles calculation of the elastic stiffness tensor of aluminium nitride under high pressure [J]. Journal of Physics: Condensed Matter, 1994, 6(38):7617-7632.
[43] VERMA U P, BISHT P S. Ab-initio study of AlN in zinc-blende and rock-salt phases[J]. Solid State Sciences, 2010, 12(5):665-669.
[44] PANDA K B, CHANDRAN K S R. Determination of elastic constants of titanium diboride (TiB) from first principles using FLAPW implementation of the density functional theory[J]. Computational Materials Science, 2006, 35(2):134-150.
[45] SPOOR P.S., MAYNARD J D, PAN M J, GREEN D J, HELLMANN J R, TANAKA T. Elastic constants and crystal anisotropy of titanium diboride[J]. Applied Physics Letters, 1997, 70(15):1959-1961.
[46] DUAN Y H, SUN Y, GUO Z Z, PENG M J, ZHU P X, HE J H. Elastic constants of AlB2 -type compounds from first-principles calculations[J]. Computational Materials Science, 2012, 51(1):112-116.
[47] 王海蕾.Mg-Al合金熔体碳质孕育晶核/基体间界面性质的第一性原理研究[D],广州:华南理工大学,2014.
[48] GILMAN J J, ROBERTS B W. Elastic Constants of TiC and TiB2[J]. Journal of Applied Physics, 1961, 32(7):1405-1405.
[49] MOTT P H, DORGAN J R, ROLAN C M. The bulk modulus and Poisson’s ratio of “incompressible” materials[J]. Journal of Sound & Vibration, 2008, 312(4-5):572-575
[50] HENANN D L, ANANND L. Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness[J]. Acta Materialia, 2009, 57(20):6057-6074
[51] DAALDEROP G H, KELLY P J, SCHUURMANS M F. First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel[J]. Physical Review B Condensed Matter, 1990, 41(17):11919
[52] KLUGE M D, RAY J R, RAHMAN A. Molecular dynamic calculation of elastic constants of silicon[J]. Journal of Chemical Physics, 1986, 85(7):4028-4031
[53] LOUAIL L., MAOUCHE D., A. ROUMILI, SAHRAOUI F A. Calculation of elastic constants of 4d transition metals[J]. Materials Letters, 2004, 58(24):2975-2978
[54] WU Y, HU W, HAN S. First-principles calculation of the elastic constants, the electronic density of states and the ductility mechanism of the intermetallic compounds: YAg, YCu and YRh[J]. Physica B Physics of Condensed Matter, 2008, 403(19):3792-3797
[55] SINKO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(29):6989-7005(6917)
[56] 李昱材, 张国英, 魏丹, 何君琦. 金属电极电位与费米能级的对应关系[J]. 沈阳师范大学学报: 自然科学版, 2007, 25(1):25-28
[57] 黄元春, 肖政兵, 张欢欢, 刘宇. 平衡相对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr铝合金性能影响:第一性原理研究[J]. 航空材料学报, 2014, 34(3):28-34.
[58] 杨少华, 刘增威, 林明. 7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J]. 有色金属科学与工程, 2017, 8(4):7-11.
[59] 罗垂意, 李之锋, 彭弯弯. 锂离子电池正极材料LixNi0.5Mn0.5O2电子结构的第一性原理研究[J]. 有色金属科学与工程, 2016, 7(4):45-49.

相似文献/References:

[1]徐贵松,吴炳乾.稀土变质剂在铝及其合金中的应用[J].有色金属科学与工程,1996,(03):28.
[2]赵鸿金,曾文锋,孔 军,等.7055铝合金多级均匀化工艺研究[J].有色金属科学与工程,2013,(03):49.
 ZHAO Hong-jin,ZENG Wen-feng,KONG Jun,et al.Multi-level homogenization technology of 7055 aluminum alloy[J].,2013,(06):49.
[3].稀土信息[J].有色金属科学与工程,1990,(03):64.
[4]唐华生.高性能铝合金制造新技术[J].有色金属科学与工程,1989,(04):6.
[5]赵鸿金,曾文锋,孔军,等.7055铝合金多级均匀化工艺研究[J].有色金属科学与工程,2016,(05预):1210.
 ZHAO Hong-jin,ZENG Wen-feng,KONG Jun,et al.Multi-level homogenization technology research of 7055 aluminum alloy[J].,2016,(06):1210.
[6]邱世涛a,b,李之峰a,等.Ti掺杂LiNiO2第一性原理研究[J].有色金属科学与工程,2018,(02预):31.
 QIU Shitaoa,bLI Zhifenga,b ZHONG Shengwena,et al.First-principles study of Ti doped LiNiO2[J].,2018,(06):31.
[7]邱世涛a,b,李之峰a,等.Ti掺杂LiNiO2第一性原理研究[J].有色金属科学与工程,2018,(02):41.[doi:10.13264/j.cnki.ysjskx.2018.02.008]
 QIU Shitaoa,b,LI Zhifenga,et al.On the first principles of Ti-doped LiNiO2[J].,2018,(06):41.[doi:10.13264/j.cnki.ysjskx.2018.02.008]

备注/Memo

备注/Memo:
基金项目:国家重点实验室自主研究项目(NO.ZZYJKT2018-06)
通信作者:刘宇(1988-),男,博士,主要从事铝合金材料设计、熔体净化等研究工作,E-mail:csuliuyu@csu.edu.cn.
更新日期/Last Update: 2018-12-20