|本期目录/Table of Contents|

[1]张浩,王广,张诗瀚,等.铜渣直接还原动力学※[J].有色金属科学与工程,2019,(01):6-12.
 ZHANG Hao,WANG Guang,ZHANG Shi-han,et al.ZHANG Hao, WANG Guang, ZHANG Shi-han, WANG Jing-song, XUE Qing-guo[J].,2019,(01):6-12.
点击复制

铜渣直接还原动力学※(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年01期
页码:
6-12
栏目:
出版日期:
2019-01-20

文章信息/Info

Title:
ZHANG Hao, WANG Guang, ZHANG Shi-han, WANG Jing-song, XUE Qing-guo
作者:
张浩王广张诗瀚王静松薛庆国
(北京科技大学钢铁冶金新技术国家重点实验室,北京 100083)
Author(s):
ZHANG Hao WANG Guang ZHANG Shi-han WANG Jing-song XUE Qing-guo
(State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083)
关键词:
铜渣碳热还原动力学
分类号:
-
DOI:
-
文献标志码:
A
摘要:
我国铜渣资源储量丰富,渣中含有多种有价金属,具有很高的二次利用价值。为了揭示铜渣提铁的碳热还原机理,以无烟煤为还原剂,进行铜渣含碳球团等温还原实验,并对其进行动力学分析。本实验设定的还原温度为1000℃、1050℃、1100℃、1150℃和1200℃,碳氧比即nc/no=1.0。结果表明,对于铜渣含碳球团等温还原实验,温度对反应速率有重要影响;该反应主要限速环节为气相扩散,活化能数值为118.059kJ/mol;对其进行阶段性动力学分析,其活化能在61.54kJ/mol~146.98kJ/mol范围内,且活化能的数值随着还原度的变化而变化,具体表现为:第一阶段反应活化能数值较小,原因可能是该阶段反应刚开始,原铜渣中含有一些铁氧化物(Fe3O4)先参与了反应;第二阶段反应活化能较高,此时原铜渣中的铁氧化物已基本反应,铁以橄榄石的状态存在,且橄榄石呈液态,致使球团孔隙度降低,气体在球团内的扩散受阻。

参考文献/References:

[1].王华,李磊.铜渣中有价金属回收的应用基础研究[M].北京:科学出版社,2013.
[2].SHEN H T, FORSSBERG E. An overview of recovery of metals from slags[J]. Waste Management,2003,23(10):933-949.
[3].SHI C J, MEYER C, BEHNOOD A. Utilization of copper slag in cement and concrete[J]. Resources,Conservation and Recycling,2008, 52(10):1115-1120.
[4].KAMBHAM K, SANGAMESWARAN S, DATAR S R, et al. Copper slag:optimization of productivity and consumption for cleaner production in dry abrasive blasting[J]. Journal of Cleaner Production,2007,15(5):465-473.
[5].赵凯,程相利,齐渊洪,等.铜渣处理技术分析及综合利用新工艺[J].中国有色冶金,2012,41(1):56-60.
[6].张林楠,张力,王明玉,等.铜渣的处理与资源化[J].矿产综合利用,2005(5):22-27.
[7].ALTER H. The composition and environmental hazard of copper slags in the context of the Basel Convention[J]. Resources,Conservation and Recycling,2005,43(4):353-360.
[8].CARRANZA F, ROMERO R, MAZUELOS A, et al. Biorecovery of copper from converter slags:Slags characterization and exploratory ferric leaching tests[J]. Hydrrometallurgy,2009,97(1/2):39-45.
[9].CAO H Y, FU N X,WANG C G,et al. Selective precipitation and separation of Fe components from copper smelting slags[J]. Multipurpose Utilization of Mineral Resources,2009(2):8?11.
[10].李镇坤,文衍宣,苏静.无烟煤直接还原铜渣中铁矿无工艺研究[J].无机盐工业,2014,46(6):51-55.
[11].曹志成,孙体昌,薛逊,等.无烟煤转底炉直接还原铜渣回收铁、锌研究[J].矿冶工程,2017,37(2):74-78.
[12].赵凯,宫晓燕,李杰,等.直接还原法回收铜渣中铁、铜和锌的热力学[J].环境工程学报,2016,10(5):2638-2646.
[13].王云,朱荣,郭亚光,等.铜渣还原磁选工艺实验研究[J].有色金属科学与工程,2014,5(5):61-67.
[14].杨慧芬,景丽丽,党春阁.铜渣中铁组分的直接还原与磁选回收[J].中国有色金属学报.2011,21(5):1165-1170.
[15].杨学民,郭占成,王大光,等.含碳球团还原机理研究[J].化工冶金.1995,16(2):118-127.
[16].SEATON C E, FOSTER J S, VELASCO J. Redution kinetics of hematite and magnetite pellets containing coal char[J]. Transactions of the Iron and Steel Institute of Japan,1983,23(6):490-496.
[17].Rao Y K. The kinetics of reduction of hematite by carbon[J]. Metallurgical and Materials Transactions B,1971,2(5):1439-1447.
[18].JANDER W. Reactions in the Sofid State at High Temperatures[J]. Z. Anorg. Ailgem. Chem., 1927, 163(1/2):1-30.
[19].GINSTLING A M, BROUNSHTEIN B I. Concerning the diffusion kinetics of reactions in spherical particles[J]. J. Appl. Chem. USSR, 1950, 23(12):1327.
[20].DEY S K, JANA B, BASUMALLICK A. Kinetics and reduction characteristics of hematite-noncoking coal mixed pellets under nitrogen gas atmosphere[J]. ISIJ Int,1993,33(7):735.
[21].王广,薛庆国,沈颖峰,等.硼铁精矿的碳热还原热力学[J].工程科学学报,2016,38(5):623-629.

相似文献/References:

[1]曾军龙,肖坤明.分散剂用于炉渣中回收铁的研究[J].有色金属科学与工程,2011,(06):71.
 ZENG Jun-long,XIAO Kun-ming.The research on using dispersant agent to lron recovery in slag[J].,2011,(01):71.
[2]刘会莲.从铜渣中提取铜银新工艺[J].有色金属科学与工程,1991,(01):12.
[3]李磊,王华,胡建杭.铜渣熔融还原过程中硫的行为特征[J].有色金属科学与工程,2014,(05):18.[doi:10.13264/j.cnki.ysjskx.2014.05.003]
 LI Lei,WANG Hua,HU Jianhang.Sulfur behavior characteristics in the process of copper slags smelting reduction[J].,2014,(01):18.[doi:10.13264/j.cnki.ysjskx.2014.05.003]
[4]王云,朱荣,郭亚光,等.铜渣还原磁选工艺实验研究[J].有色金属科学与工程,2014,(05):61.[doi:10.13264/j.cnki.ysjskx.2014.05.011]
 WANG Yun,ZHU Rong,GUO Yaguang,et al.Experimental study on the copper slag reduction process[J].,2014,(01):61.[doi:10.13264/j.cnki.ysjskx.2014.05.011]
[5]王云,朱荣,郭亚光,等.铜渣还原磁选工艺实验研究[J].有色金属科学与工程,2015,(03预):20.
 WANG Yun ZHU Rong GUO Ya-guang ZHOU Meng GUO Ming-wei ZHOU Chun-fang.The Experimental Study on the Process of the Copper Slag Reduction[J].,2015,(01):20.
[6]李磊,王华,胡建杭.铜渣熔融还原过程中硫的行为特征[J].有色金属科学与工程,2016,(05预):780.
 LI Lei,WANG Hua,HU Jian-hang.Copper Slags Smelting Reduction[J].,2016,(01):780.
[7]汤卫东(,姜平国.CuO氯化过程动力学研究[J].有色金属科学与工程,2017,(01预):48.
 TANG Weidong JIANG Pingguo.Study on Kinetics of the Chlorination Process of Copper Oxide[J].,2017,(01):48.
[8]汤卫东,朱伟伟,姜平国,等.CuO氯化过程动力学研究[J].有色金属科学与工程,2017,(01):46.[doi:10.13264/j.cnki.ysjskx.2017.01.008]
 TANG Weidong,ZHU Weiwei,JIANG Pingguo,et al.Kinetics of chlorination process of copper oxide[J].,2017,(01):46.[doi:10.13264/j.cnki.ysjskx.2017.01.008]
[9]姜平国,闫永播,刘金生,等.铜渣在CO2-CO混合气体中焙烧实验研究[J].有色金属科学与工程,2018,(01预):6.
 JIANG ping-guo,YAN yong-bo,LIU jin-sheng,et al.Study on Roasting of Copper Slag in CO2 - CO Mixed Gas[J].,2018,(01):6.
[10]姜平国,闫永播,刘金生,等.铜渣在CO2-CO混合气体中焙烧实验研究[J].有色金属科学与工程,2018,(01):28.[doi:10.13264/j.cnki.ysjskx.2018.01.005]
 JIANG Pingguo,YAN Yongbo,LIU Jinsheng,et al.A study on the roasting of copper slag in CO2-CO mixed gas[J].,2018,(01):28.[doi:10.13264/j.cnki.ysjskx.2018.01.005]
[11]张浩,王广,张诗瀚,等.铜渣直接还原动力学[J].有色金属科学与工程,2019,(01):28.[doi:10.13264/j.cnki.ysjskx.2019.01.005]
 ZHANG Hao,WANG Guang,ZHANG Shihan,et al.Direct reduction kinetics of copper slag[J].,2019,(01):28.[doi:10.13264/j.cnki.ysjskx.2019.01.005]

备注/Memo

备注/Memo:
收稿日期:2018-10-15基金项目:国家自然科学基金项目资助(51804024)
更新日期/Last Update: 2018-12-07