|本期目录/Table of Contents|

[1]影响.微波烧结工艺对6%Al2O3/Mo复合材料结构和性能的影响[J].有色金属科学与工程,2019,(04):47-52.
 DUAN Bohuaa,b,ZHANG Zhaoa,et al.Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composites[J].,2019,(04):47-52.
点击复制

微波烧结工艺对6%Al2O3/Mo复合材料结构和性能的影响(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年04期
页码:
47-52
栏目:
出版日期:
2019-07-20

文章信息/Info

Title:
Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composites
作者:
影响
( 中南大学, a. 材料科学与工程学院; b. 有色金属材料科学与工程教育部重点实验室, 长沙 410083)
Author(s):
DUAN Bohuaab ZHANG Zhaoa YANG Donglina WANG Dezhiab
(a. School of Material Science and Engineering; b. Key Laboratory of Nonferrous Material Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China)
关键词:
微波烧结Al2O3/Mo复合材料动力学烧结激活能
分类号:
TB331
DOI:
-
文献标志码:
A
摘要:
以溶胶凝胶法制备的6% Al2O3/Mo复合粉末为原料,采用微波烧结技术制备了6% Al2O3/Mo复合材料。研究了微波烧结温度及烧结时间对复合材料的结构及性能的影响,并探讨了复合粉末的微波烧结动力学。结果表明:溶胶凝胶法制备的6% Al2O3/Mo复合粉末形貌呈平滑多边形和近球形;Al2O3/Mo复合材料的致密度及硬度均随着微波烧结温度及烧结时间的增加而增加;1600℃下烧结30min的6% Al2O3的复合材料致密度及硬度达到98.1%和2.969GPa。Al2O3/Mo复合粉体微波烧结的致密化机制是体积扩散和晶界扩散共同作用结果,且随烧结温度升高,体积扩散逐渐占据主导地位,其微波烧结激活能在1500-1600℃范围内为201.93 kJ/mol。研究结果显示微波烧结是一种快速制备高致密Al2O3/Mo复合材料的有效方法。

参考文献/References:

[1] LIU G, Z HANG G J, J IANG F et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350.

[2] CEDAT D, F ANDEUR O, R EY C et al. Polycrystal model of the mechanical behavior of a Mo–TiC30 vol.% metal–ceramic composite using a three-dimensional microstructure map obtained by dual beam focused ion beam scanning electron microscopy[J]. Acta Materialia, 2012, 60(4): 1623-1632.

[3] YI W, W ANG D Z, L IU H Y et al. Preparation and characterization of sintered molybdenum doped with MoSi2/La2O3/Y2O3 composite particle [J]. Materials Science and Engineering: A, 2012, 558(15): 497-501.

[4] SBAIZERO O, P EZZOTTI. Influence of the metal particle size on toughness of Al2O3/Mo composite[J]. Acta Materialia, 2000, 48(4): 985-992.

[5] WANG P, Y ANG D X, W EI S Z et al. Study on RE Phase of Mo-La Alloy Prepared by a Liquid-Liquid Doping Method[J]. Rare Metal Materials and Engineering, 2010, 39(12): 2185-2188.

[6] MONDAL A, A GRAWAL D, U PADHYAYA A. Microwave Sintering of Refractory Metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys[J]. Journal of Microwave Power and Electromagnetic Energy, 2010, 44(1): 28 -44.

[7] KRAKHMALEV P V, S TROM E, S UNBERG M et al. Microstructure, hardness and indentation toughness of C40 Mo(Si,Al)2/ZrO2 composites prepared by SPS of MA powders [J]. Scripta Materialia, 2003, 48(6): 725-729.

[8] 王起,焦树强. 纳米非晶Si2N2O粉末的SPS烧结及烧结体性能研究[J].有色金属科学与工程,2017,8(5):58-63.

[9] TAKIDA T, M ABUCHI M, N AKAMURA M et al. Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering: A, 2000, 276(1-2): 269-272.

[10] 文彦,张钦英,郭圣达,等.WC-6Co硬质合金SPS烧结工艺[J].有色金属科学与工程,2017,8(3):74-78.

[11] OGHBAEI M, M IZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds, 2010, 494(1-2): 175-189.

[12] 王德志,张宇晴,段柏华. 微波快速熔渗制备钼铜复合材料[J].有色金属科学与工程,2018,9(3):41-45.

[13] MONDAL A, U PADHYAYA A, A GRAWAL D. Effect of heating mode on sintering of tungsten[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(5): 597 -600.

[14] FANG Y, Z HANG Y S, S ONG J J et al. Influence of structural parameters on the tribological properties of Al2O3/Mo laminated nanocomposites[J]. Wear, 2014, 320(15): 152-160.

[15] HEIDARPOUR A, K ARIMZADEH F, E NAYATI M H. In situ synthesis mechanism of Al2O3–Mo nanocomposite by ball milling process [J]. Journal of Alloys and Compounds, 2009, 477(1-2): 692-695.

[16] GOFFREDO P, S TEFANO G, C ESARE M et al. Wear behaviour of Al 2O3–Mo and Al2O3–Nb composites [J]. Wear, 2007, 262(11-12): 1346-1352.

[17] LIU S H, L IU J M, D ONG X L et al. Electromagnetic wave shielding and absorbing materials[M]. Beijing: Chemical Industry Press, 2007:322 .

[18] HUANG B Y. Theory of Power Metallurgy[M]. Beijing: Metallurgical Industry Press, 2004:284 .

[19] ZHANG P L, N I F, Z HAO J J et al. Research Status of Doped Molybdenum-based Alloys[J]. Cemented carbide, 2013, 30(2): 107 -112.

[20] WANG L S, Y ANG Y B, Z HANG J S et al. Activated sintering of carbon doped boron carbide and its kinetics[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(1): 37-42.

[21] MAQUEDA P, L UIS P M, J OSE M C et al. Kinetics of the initial stage of sintering from shrinkage data: Simultaneous determination of activation energy and kinetic model from a single non-isothermal experiment [J]. Journal of the American Ceramic Society, 2002, 85(4):763 -768.

[22] SATO E, C ARRY C. Effect of powder granulometry and pretreatment on sintering behavior of submicron-grained-alumina[J]. Journal of the European Ceramic Society, 1995, 15(1): 9-16.

[23] FANG T T, SHIUE J T, S HIAU F S. On the evaluation of the activation energy of sintering [J]. Materials Chemistry and Physics, 2003, 80(1): 108-113.

[24] ZUO F, S AUNIER S, M EUNIER C et al. Non-thermal effect on densification kinetics during microwave sintering of α-alumina[J]. Scripta Materialia, 2013, 69(4): 331-333.

[25] CHEN C, W EI S Z, X U L J et al. Sintering and kinetics of Al2O3/Mo nanometer powders by molding formation[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10): 2817-2824.

相似文献/References:

[1]段柏华a,b,张钊a,等.微波烧结工艺对6%Al2O3/Mo复合材料结构和性能的影响[J].有色金属科学与工程,2019,(04):59.[doi:10.13264/j.cnki.ysjskx.2019.04.010]
 DUAN Bohuaa,b,ZHANG Zhaoa,et al.Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composite material[J].,2019,(04):59.[doi:10.13264/j.cnki.ysjskx.2019.04.010]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2019-05-24