|本期目录/Table of Contents|

[1]李笑笑,杨凯,曾德彬,等.微波水热法制备棒状BiPO4催化剂及其光催化性能研究[J].有色金属科学与工程,2019,(04):78-84.[doi:10.13264/j.cnki.ysjskx.2019.04.013]
 LI Xiaoxiao,YANG Kai,ZENG Debin,et al.Preparation of rod-like BiPO4 by microwave hydrothermal method and study on its photocatalytic properties[J].,2019,(04):78-84.[doi:10.13264/j.cnki.ysjskx.2019.04.013]
点击复制

微波水热法制备棒状BiPO4催化剂及其光催化性能研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年04期
页码:
78-84
栏目:
出版日期:
2019-07-20

文章信息/Info

Title:
Preparation of rod-like BiPO4 by microwave hydrothermal method and study on its photocatalytic properties
文章编号:
1674-9669(2019)04-0078-07
作者:
李笑笑1 杨凯12 曾德彬1 张开莲1 余长林12 黄微雅1
(1. 江西理工大学冶金与化学工程学院,江西 赣州 341000;2. 福州大学能源与环境光催化国家重点实验室,福州350002)
Author(s):
LI Xiaoxiao1 YANG Kai12 ZENG Debin1 ZHANG Kailian1YU Changlin12 HUANG Weiya1
(1.School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2.State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China)
关键词:
微波水热法沉淀法BiPO4光催化活性
分类号:
TF111.3;O643.3
DOI:
10.13264/j.cnki.ysjskx.2019.04.013
文献标志码:
A
摘要:
通过采用微波水热法和沉淀法制备了BiPO4光催化剂,并且用400 W金卤灯模拟太阳光,探究了2种方法制备的BiPO4光催化降解酸性橙Ⅱ和亚甲基蓝的活性. 主要是对微波水热法制备的BiPO4进行研究. 应用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见漫反射吸收光谱(UV-vis DRS)、傅立叶变换红外光谱(FT-IR)对催化剂进行表征. 紫外漫反射图谱可以看出,微波水热法制备的BiPO4的带隙为4.05 eV,比普通沉淀法制出的样品带隙窄. 其光催化降解酸性橙Ⅱ和亚甲基蓝的测试表明,微波水热法样品的降解速率常数分别是普通沉淀法的7.8倍和1.5倍,光催化活性有显著提高.

参考文献/References:

[1] YU C L, JIMMY C Y, CHAN M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres[J]. Journal of Solid State Chemistry, 2009, 182(5):1061-1069.
[2] YU C L, BAI Y, HE H B, et al. Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals[J]. Chinese Journal of Catalysis, 2015, 36(12): 2178-2185.
[3] 李鑫,余长林,樊启哲,等.溶剂热制备球状ZnS纳米光催化剂及其光催化性能[J]. 有色金属科学与工程, 2012, 3(3): 21-26.
[4] 刘仁月,吴榛,白羽,等.微米球光催化剂在环境净化及能源转化的研究进展[J]. 有色金属科学与工程, 2016, 7(6): 62-72.
[5] 白羽,吴榛,刘仁月,等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J]. 有色金属科学与工程, 2016, 7(2): 60-66.
[6] 何洪波,薛霜霜,余长林.钨基半导体光催化剂研究进展[J]. 有色金属科学与工程, 2016, 6(5): 32-39.
[7] KUANG P Y, RAN J R, LIU Z Q, et al. Enhanced photoelectrocatalytic activity of BiOI nanoplate-zinc oxide nanorod p-n heterojunction[J]. Chemistry-A European Journal, 2015, 21(43): 15360-15368.
[8] KUANG P Y, SU Y Z, XIAO K, et al. Double-shelled CdS-and CdSe-cosensitized ZnO porous nanotube arrays for superior photoelectrocatalytic applications[J]. ACS applied materials & interfaces, 2015, 7(30): 16387-16394.
[9] WEI R B, HUANG Z L, GU G H, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 231: 101-107.
[10] ZHENG N C, OUYANG T, CHEN Y, et al. Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis[J]. Catalysis Science & Technology, 2019, 9(6): 1357-1364.
[11] KUANG P Y, ZHENG P X, LIU Z Q, et al. Embedding Au quantum dots in rimous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution[J]. Small, 2016, 12(48): 6735-6744.
[12] IITAKA K, TANI Y, UMEZAWA Y. Orthophosphate ion-sensors based on a quartz-crystal microbalance coated with insoluble orthophosphate salts[J]. Analytica Chimica Acta, 1997, 338(1/2): 77-87.
[13] CHARYULU M, VENUGOPAL CHETTY K, PHAL D, et al. Recovery of americium from nitric acid solutions containing calcium by different co-precipitation methods[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251(1): 153-154.
[14] PAN C , ZHU Y. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye[J]. Environmental Science & Technology, 2010, 44(14): 5570-5574.
[15] GUO Y, WANG P, QIAN J, et al. Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: Synergistic effect of improved charge separation efficiency and redox ability[J]. Applied Catalysis B: Environmental, 2018, 234: 90-99.
[16] ZHU Y, LING Q, LIU Y, et al. Photocatalytic performance of BiPO4 nanorods adjusted via defects[J]. Applied Catalysis B: Environmental, 2016, 187: 204-211.
[17] GOODENOUG J B, HAMNETT A, DARE-EdWARDS M P, et al. Inorganic materials for photoelectrolysis[J]. Surface Science, 1980, 101(1-3): 531-540.
[18] BLASSE G, DIRKSEN G J, KORTE P H M D. Materials with cationic valence and conduction bands for photoelectrolysis of water[J]. Materials Research Bulletin, 1981, 16(8): 991-998.
[19] 朱永法.BiPO4系高活性光催化材料研究[C]//中国化学学会,武汉,全国太阳能光化学与光催化学术会议, 2012.
[20] ZHAO D, CHEN C, WANG Y, et al. Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication[J]. Journal of Physical Chemistry C, 2008, 112(15): 5993-6001.
[21] PAN C, LI D, MA X, et al. Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4[J]. Catalysis Science & Technology, 2011, 1(8): 1399-1405.
[22] PAN C, JING X U, CHEN Y I, et al. Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B[J]. Applied Catalysis B: Environmental, 2012, 115-116(5): 314-319.
[23] GENG J, HOU W H, LV Y N, et al. One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis, characterization and growth mechanism[J]. Inorganic Chemistry, 2005, 44(23): 8503-8509.
[24] 刘良.含铋微纳材料的合成及其物性研究[D]. 无锡: 江南大学, 2008.
[25] LI G, DING Y, ZHANG Y, et al. Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances[J]. Journal of Colloid and Interface Science, 2011, 363(2): 497-503.
[26] SUN R D, NAKAJIMA A, WATANABE I, et al. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 136(1): 111-116.
[27] ROBERT D, PISCOPO A, HEINTZ O, et al. Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light[J]. Catalysis Today, 1999, 54(2/3): 291-296.
[28] XU Y, ZHENG W, LIU W. Enhanced photocatalytic activity of supported TiO2:dispersing effect of SiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 122(1): 57-60.
[29] VAN G R, AGUADO J, LOPEZ-MUNOZ M J, et al. Synthesis of size-controlled silica-supported TiO2 photocatalysts[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1): 315-322.
[30] MAZZARINO I, PICCININI P. Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst[J]. Chemical Engineering Science, 1999, 54(15): 3107-3111.
[31] 刘鸿,成少安,张鉴清,等.泡沫镍载二氧化钛光催化降解磺基水杨酸[J]. 中国环境科学, 1998(6): 548-551.
[32] 颜秀茹,李晓红,霍明亮,等.纳米SnO2@TiO2的制备及其光催化性能[J]. 物理化学学报, 2001, 17(1): 23-27.
[33] 沈杭燕,唐新硕.负载型TiO2催化剂的制备及光催化丙酮蒸汽的降解性能研究[J]. 分子催化, 1999(6): 435-440.
[34] TENNAKONE K, KOTTEGODA I R M. Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93(1): 79-81.
[35] LIU D, CAI W B, ZHU, Y F, et al.Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 236: 205-211.
[36] SARANYA M, RAMACHANDRAN R, SAMUEL E J J, et al. Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst[J]. Powder Technology, 2015, 279: 209-220.
[37] 王丽,莎仁,苑光伟,等. Tb3+掺杂BiPO4基绿色荧光粉的共沉淀法合成及发光性质[J]. 稀土, 2014, 35(1): 71-75.
[38] 陶亚茹.铋系半导体光催化剂的制备及其对有机污染物的降解研究[D]. 上海: 东华大学, 2015.
[39] ZHANG Y, SHEN B, HUANG H, et al. BiPO4/reduced graphene oxide composites photocatalyst with high photocatalytic activity[J]. Applied Surface Science, 2014, 319: 272-277.
[40] 王丹军,何小梅,朱燕,等.Sm3+掺杂棒状BiPO4微晶的制备及其光催化活性增强机理[J]. 人工晶体学报, 2015, 44(11): 3172-3178.

相似文献/References:

[1]罗方承,吕文广.分步液相沉淀法生产高活性碳酸锆[J].有色金属科学与工程,2002,(03):39.
[2]刘宇晖,余荣旻,欧阳宇平,等.粒度可控氧化钇粉体的制备[J].有色金属科学与工程,2015,(03):22.[doi:10.13264/j.cnki.ysjskx.2015.03.004]
 LIU Yuhui,YU Rongmin,OUYANG Yuping,et al.Preparation of size controllable yttrium oxide powder[J].,2015,(04):22.[doi:10.13264/j.cnki.ysjskx.2015.03.004]
[3]刘宇晖,余荣旻,欧阳宇平,等.粒度可控氧化钇粉体的制备[J].有色金属科学与工程,2016,(05预):460.
 Liu Yuhui,Yu Rongmin,Ouyang Yuping,et al.Preparation of size controlled yttrium oxide powder[J].,2016,(04):460.
[4]吴梦,张大超,徐师,等.废水除磷工艺技术研究进展[J].有色金属科学与工程,2019,(02):26.
 Research p rogress of dephosphorization technology on wastewater WU Meng, ZHANG Dachao, X U Shi , CHEN Min,WANG chuying[J].,2019,(04):26.
[5]吴梦,张大超,徐师,等.废水除磷工艺技术研究进展[J].有色金属科学与工程,2019,(02):97.[doi:10.13264/j.cnki.ysjskx.2019.02.014]
 WU Meng,ZHANG Dachao,XU Shi,et al.Research progress of dephosphorization technology on wastewater[J].,2019,(04):97.[doi:10.13264/j.cnki.ysjskx.2019.02.014]

备注/Memo

备注/Memo:
收稿日期:2018-11-06
基金项目:国家自然科学基金资助项目(21567008,21607064,21707055); 江西理工大学清江优秀人才支持计划; 江西省5511科技创新人才计划(20165BCB18014); 江西省主要学科学术带头人(S2017RCDTB0001) ; 江西省自然科学基金(20161BAB203090, ,20181BAB213010, 20181BAB203018); 江西省教育厅青年基金(GJJ160671) ; 福州大学国家重点实验室开放基金(SKLPEE-KF201712); 江西理工大学研究生创新基金(ZS2018-S071).
通信作者:杨凯(1987- ),男,副教授,主要从事能源与环境光催化方面的研究,Email: yangkai19871006@126.com.
更新日期/Last Update: 2019-08-22