|本期目录/Table of Contents|

[1]田长顺,石亮.农业废弃物吸附稀土离子的研究进展[J].有色金属科学与工程,2019,(04):113-122.[doi:10.13264/j.cnki.ysjskx.2019.04.018]
 TIAN Changshun,SHI Liang.Advances in adsorption of rare earth ions by agricultural wastes[J].,2019,(04):113-122.[doi:10.13264/j.cnki.ysjskx.2019.04.018]
点击复制

农业废弃物吸附稀土离子的研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年04期
页码:
113-122
栏目:
出版日期:
2019-07-20

文章信息/Info

Title:
Advances in adsorption of rare earth ions by agricultural wastes
文章编号:
1674-9669(2019)04-0113-10
作者:
田长顺 石亮
(江西理工大学资源与环境工程学院, 江西 赣州 341000)
Author(s):
TIAN Changshun SHI Liang
(School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)
关键词:
稀土离子 吸附 生物炭 农业废弃物
分类号:
X502; TD865
DOI:
10.13264/j.cnki.ysjskx.2019.04.018
文献标志码:
A
摘要:
稀土元素在工业上大量应用的同时, 给人类身体健康和生态环境带来了危害, 近年来引起了广泛关注. 研究发现吸附法相比其他传统水处理方法具有效果较好、操作简单、成本较低等优点, 它是消除稀土离子危害的最具潜力的方法之一; 而农业废弃物吸附剂因是农业副产物具有廉价的特性, 且部分农业废弃物吸附稀土离子时吸附量大、反应速率快, 可作为主要研究对象. 文中对农业废弃物吸附材料吸附稀土离子的机理、吸附影响因素、吸附应用与吸附模型研究进展进行总结评述, 并对农业废弃物吸附稀土离子的发展方向进行展望.

参考文献/References:

[1] ANASTOPOULOS I, BHATNAGAR A, LIMA E C. Adsorption of rare earth metals: A review of recent literature[J]. Journal of Molecular Liquids, 2016, 221: 954-962.
[2] DAS N, DAS D. Recovery of rare earth metals through biosorption: An overview[J]. Journal of Rare Earths, 2013, 31(10): 933-943.
[3] 池汝安, 王淀佐. 稀土矿物加工[M]. 北京: 科学出版社, 2014: 6-7.
[4] GWENZI W, MANGORI L, DANHA C, et al. Sources, behaviour, and environmental and human health risks of hightechnology rare earth elements as emerging contaminants[J]. Science of the Total Environment, 2018, 636 : 299-313.
[5] HARANATH D, MISHRA S, JOSHI A G, et al. Effective doping of rare-earth ions in silica gel: A novel approach to design active electronic devices[J]. Nano-Micro Lett, 2011, 3(3): 141-145.
[6] MATSUURA D. Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals[J]. Applied Physics Letters, 2002, 81(24): 4526-4528.
[7] 贺飞, 盖世丽, 杨飘萍, 等. 稀土上转换荧光材料的发光性质调变及其应用[J]. 发光学报, 2018, 39(1): 92-105.
[8] CHENG R H, ZHOU Y J, HOU Q L, et al. ZnO/SiO2-modified rare-earth-metal ternary catalyst bearing quaternary ammonium salts for synthesis of high molecular weight poly(propylene carbonate)[J]. Chinese Journal of Catalysis, 2018, 39(8): 1303-1310.
[9] POLLNAU M. Rare-earth-doped waveguide amplifiers and lasers[J]. Handbook on the Physics and Chemistry of Rare Earths, 2017, 51: 111-168.
[10] 涂婷, 王月, 安达, 等. 赣南稀土矿区地下水污染现状、危害及处理技术与展望[J]. 环境工程技术学报, 2017, 7(6): 691-699.
[11] 朱为方, 徐素琴, 邵萍萍, 等. 赣南稀土区生物效应研究—稀土日允许摄入量[J]. 中国环境科学, 1997, 17(1): 63-66.
[12] 陈祖义, 朱旭东. 稀土元素的骨蓄积性、毒性及其对人群健康的潜在危害[J]. 生态与农村环境学报, 2008, 24(1): 88-91.
[13] 吴磊, 周跃平, 钟宏京. 赣南稀土矿区白血病病例对照研究[J]. 中华流行病学杂志, 2003, 24(10): 879-882.
[14] 吕赟, 王应军, 冷雪, 等. 稀土铈对水华鱼腥藻生理特性及藻毒素释放的影响[J]. 农业环境科学学报, 2012, 31(9): 1677-1683.
[15] 孟晓红, 贾瑛, 付超然. 重金属稀土元素污染在水生物体内的生物富集[J]. 农业环境保护, 2000, 19(1): 50-52.
[16] 周丹. 生物炭对离子型稀土矿区污染土壤的修复研究[D]. 赣州: 江西理工大学, 2018.
[17] 刘立华, 杨正池, 赵露. 重金属吸附材料的研究进展[J]. 中国材料进展, 2018, 37(2): 100-107.
[18] 马倩怡, 陈志强, 陈志彪, 等. 南方红壤侵蚀流域水稻田中稀土元素的迁移累积特征[J]. 环境科学学报, 2018, 38(3): 1172-1178.
[19] 张青青, 陈志强, 陈志彪, 等. 模拟降雨下离子型稀土矿区坡面产流产沙与稀土迁移规律[J]. 稀土, 2018, 39(5): 56-69.
[20] 肖作义, 马耀祖, 郑春丽, 等. 季节性冻融作用对土壤吸附稀土元素镧的影响[J]. 应用化工, 2018, 47(9): 1841-1845.
[21] 郭钟群, 赵奎, 金解放, 等. 不同吸附剂对稀土离子的吸附特性研究进展[J]. 中国稀土学报, 2018, 36(4): 406-416.
[22] 施华珍, 刘坤, 汤睿, 等. 有机改性磁性碱性钙基膨润土的制备及对Cu(Ⅱ)和Mn(Ⅱ)的吸附[J]. 化工进展, 2018, 37(11): 4509-4521.
[23] KHAN T A, MUKHLIF A A, KHAN A A. Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies[J]. Egyptian Journal of Basic and Applied Sciences, 2017, 4(3): 236-248.
[24] GUPTA N K, GUPTA A, RAMTEKE P, et al. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review[J]. Journal of Molecular Liquids, 2019, 274: 148-164.
[25] 梁长利, 段敏静, 许宝泉, 等. 稀土离子微生物吸附研究进展[J]. 中国稀土学报, 2017, 35(4): 449-460.
[26] VIJAYARAGHAVAN K, YUN Y S. Bacterial biosorbents and biosorption[J]. Biotechnology Advances, 2008, 26(3): 266-291.
[27] JAYA S V C, DAS N. Screening of Biowaste Materials for the Sorption of Cerium (III) from Aqueous Environment[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5(5): 402-408.
[28] JAYA S V C, DAS D, DAS N. Optimization of parameters for praseodymium(III) biosorption onto biowaste materials using response surface methodology: Equilibrium, kinetic and regeneration studies[J]. Ecological Engineering, 2015, 81: 321-327.
[29] TORAB-MOSTAEDI M, ASADOLLAHZADEH M, HEMMATI A, et al. Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies[J]. Research on Chemical Intermediates, 2015, 41(2): 559-573.
[30] DAS D, JAYA S V C, DAS N. Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: batch and column studies[J]. Minerals Engineering, 2014, 69: 40-56.
[31] AHSAN M A, KATLA S K, ISLAM M T,et al. Adsorptive removal of methylene blue, tetracycline and Cr(VI) from water using sulfonated tea waste[J]. Environmental Technology & Innovation, 2018, 11: 23-40.
[32] K?譈TAHYALI C, SERT S, ?覶ETINKAYA B, et al. Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder[J]. Separation Science and Technology, 2010, 45: 1456-1462.
[33] 姜成名, 张萌, 殷旗, 等. 谷壳和柚子皮生物炭的制备及其对红壤重金属的稳定化效应[J]. 环境污染与防治, 2018, 40(7): 760-769.
[34] GAO S, LUO T T, ZHOU Q, et al. Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg2+ from aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 517: 9-17.
[35] JI Z H, FENG C L, WU X F, et al. Composite of biomass and lead resistent Aspergillus oryzae for highly efficient aqueous phase Pb(II) adsorption[J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1658-1666.
[36] AHMED S B, STOICA-GUZUN A, KAMAR F H, et al. Ultrasound enhanced removal of lead from wastewater by hazelnut shell: an experimental design methodology[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1249-1260.
[37] VILARDI G, PALMA L D, VERDONE N. Heavy metals adsorption by banana peels micro-powder. Equilibrium modeling by non-linear models[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 455-464.
[38] CORREIA I K S, SANTOS P F, SANTANA C S, et al. Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2319-2334.
[39] LIU S, XU W H, LIU Y G, et al. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592: 546-553.
[40] IMAMOGLU M, OZTURK A, AYDM S, et al. Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate[J]. Journal of Dispersion Science and Technology, 2017, 39(8): 1144-1148.
[41] 李本盛, 吴彩斌, 倪帅男, 等. 柚皮残渣制备活性炭对Cu2+吸附性能[J]. 有色金属科学与工程, 2018, 9(6): 38-44.
[42] AHMAD A, Zahid Ali GHAZI Z A, SAEED M. et al. A comparative study of the removal of Cr(VI) from synthetic solution using natural biosorbents[J]. New Journal of Chemistry, 2017, 41(19): 10799-10807.
[43] ARIM A L, CECILIO D F M, QUINA M J, et al. Development and characterization of pine bark with enhanced capacity for uptaking Cr(III) from aqueous solutions[J]. The Canadian Journal of Chemical Engineering 2017, 96(4): 855-864.
[44] LIN C, LUO W J, LUO T T, et al. A study on adsorption of Cr(VI) by modified rice straw: Characteristics, performances and mechanism[J]. Journal of Cleaner Production, 2018, 196: 626-634.
[45] ENNIYA I, RGHIOUI L, JOURANI A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels[J]. Sustainable Chemistry and Pharmacy, 2018, 7: 9-16.
[46] WANG R Z, HUANG D L, LIU Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261: 265-271.
[47] XIANG J X, LIN Q T, CHENG S L, et al. Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide-rice husk biochar composite[J]. Environmental Science and Pollution Research, 2018, 25(14) : 14032-14042.
[48] CHEN Y N, WANG H, ZHAO W, et al. Four different kinds of peels as adsorbents for the removal of Cd(II) from aqueous solution: Kinetics, isotherm and mechanism[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 146-151.
[49] K?譈TAHYALI C, SERT S, ?覶ETINKAYA B, et al. Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design[J]. Wood Science and Technology, 2012, 46(4): 721-736.
[50] JAYA S V C, DAS D, DAS N. Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies[J]. Journal of Rare Earths, 2014, 32(8): 745-758.
[51] ANAGNOSTOPOULOS V A, SYMEOPOULOS B D. Sorption of europium by malt spent rootlets, a low cost biosorbent: effect of pH, kinetics and equilibrium studies[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1): 7-13.
[52] LIN G, WANG S X, ZHANG L B, et al. Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au(III) from aqueous solutions[J]. Journal of Molecular Liquids, 2018, 258: 235-243.
[53] 李锦, 祖艳群, 李刚, 等. 载镧或铈生物炭吸附水体中As(Ⅴ)的作用机制[J]. 环境科学, 2018, 39(5): 2211-2218.
[54] GARDEA-TORRESDEY J L, ROSA G, PERALTA-VIDEA J R. Use of phytofiltration technologies in the removal of heavy metals: a review[J]. Pure Appl. Chem, 2004, 76(4): 801-813.
[55] VOLESKY B. Detoxification of metal-bearing effluents: biosorption for the next century[J]. Hydrometallurgy, 2001, 59(2/3): 203-216.
[56] DEMIRBAS A. Heavy metal adsorption onto agro-based waste materials: A review[J]. Journal of Hazardous Materials, 2008, 157(2/3): 220-229.
[57] PAGNANELLI F, MAINELLI S, VEGLI?魹 F, et al. Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling[J]. Chemical Engineering Science, 2003, 58: 4709-4717.
[58] KOLODYNSKA D, BAK J, MAJDANSKA, et al. Sorption of lanthanide ions on biochar composites[J]. Journal of Rare Earths, 2018, 36(11): 1212-1220.
[59] TORAB-MOSTAEDI, MEISAM. Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies[J]. Chemical Industry & Chemical Engineering Quarterly, 2013, 19(1): 79-88.
[60] KUSRINI E, WICAKSONO W, GUNAWAN C, et al. Kinetics, mechanism, and thermodynamics of lanthanum adsorption on pectin extracted from durian rind[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6580-6588.
[61] SWAIN K K, MISHRA P M, DEVI A P. Biosorption of Praseodymium (III) using Terminalia arjuna bark powder in batch systems: isotherm and kinetic studies[J]. Water Science & Technology, 2018, 77(3): 727-738.
[62] LALHRUAITLUANGA H, JAYARAM K, PRASAD M N V. Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study[J]. Journal of Hazardous Materials, 2010, 175: 311-318.
[63] AWWAD N S, GAD H M H, AHMAD M I. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk[J]. Colloids and Surfaces B: Biointerfaces, 2010, 81: 593-599.
[64] PANDA G C, DASA S K, CHATTERJEE S, et al. Adsorption of cadmium on husk of Lathyrus sativus: Physico chemical study[J]. Colloids and Surfaces B: Biointerfaces, 2006, 50(1): 49-54.
[65] ZHANG Z, SHI D, DING H, et al. Biosorption characteristics of 1,8-dihydroxy anthraquinone onto Aspergillus oryzae CGMCC5992 biomass[J]. International Journal of Environmental Science and Technology, 2015, 12(10): 3351-3362.
[66] SHAABAN M, ZWIETEN L V, BASHIR, et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J]. Journal of Environmental Management, 2018, 228: 429-440.
[67] GONZAGA M I S, MACKOWIAK C L, COMERFORD N B, et al. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition[J]. Soil and Tillage Research, 2017, 165: 59-65.
[68] CHEN Q. Study on the adsorption of lanthanum (III) from aqueous solution by bamboo charcoal[J]. Journal of Rare Earths, 2010, 28: 125-131.
[69] IFTEKHAR S, RAMASAMY D L, SRIVASTAVA V, et al. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review[J]. Chemosphere, 2018, 204: 413-430.
[70] OYSWO O A, ONYANGO M S, WOLKERSDORFER C. Lanthanides removal from mine water using banana peels nanosorbent[J]. International Journal of Environmental Science and Technology, 2018, 15(6): 1265-1274.
[71] JAYA S V C, DAS N. Relevant approach to assess the performance of biowaste materials for the recovery of Lanthanum (III) from aqueous medium[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014, 5(6): 88-94.
[72] SERT S, Ceren K?譈TAHYALI C, INAN S, et al. Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder[J]. Hydrometallurgy, 2008, 90(1): 13-18.
[73] AOYAMA M, TSUDA M, CHO N S, et al. Adsorption of trivalent chromium from dilute solution by conifer leaves[J]. Wood Science and Technology, 2000, 34(1): 55-63.
[74] GARDEA-TORRESDEY J L, TIEMANN K J, PERALTA-VIDEA J R, et al. Binding of erbium(III) and holmium(III) to native and chemically modified alfalfa biomass: a spectroscopic investigation[J]. Microchemical Journal, 2004, 76(1/2): 65-76.
[75] PARSONS J G, PERALTA-VIDEA J R, TIEMANN K J, et al. Use of chemical modification and spectroscopic techniques to determine the binding and coordination of gadolinium(III) and neodymium(III) ions by alfalfa biomass[J]. Talanta, 2005, 67(1): 34-45.
[76] HADJITTOFI L, CHARALAMBOUS S, PASHALIDIS I. Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres[J]. Journal of Rare Earths, 2016, 34(1): 99-104.
[77] 蔡蕊, 宋黎明, 庞长泷, 等. 利用农业废弃物处理水体重金属污染的研究进展[J]. 中国给水排水, 2014, 30(24): 61-65.

相似文献/References:

[1]肖卫红,张青梅,尤翔宇,等.镁铝水滑石的合成及其对VO3-的吸附特性[J].有色金属科学与工程,2015,(04):37.[doi:10.13264/j.cnki.ysjskx.2015.04.008]
 XIAO Weihong,ZHANG Qingmei,YOU Xiangyu,et al.Synthesis of the Mg-Al hydrotalcite and its adsorption properties for VO3-[J].,2015,(04):37.[doi:10.13264/j.cnki.ysjskx.2015.04.008]
[2]张明,李新冬,陈洋,等.纳滤膜对稀土离子的动态吸附行为及截留特性研究[J].有色金属科学与工程,2017,(06):103.
 ZHANG Ming,LI Xindong,CHEN Yang,et al.Study on the dynamic adsorption behavior and retention characteristics of rare earth ions by nanofiltration membrane[J].,2017,(04):103.
[3]张明,李新冬,陈洋,等.纳滤膜对稀土离子的动态吸附行为及截留特性[J].有色金属科学与工程,2017,(06):105.[doi:10.13264/j.cnki.ysjskx.2017.06.017]
 ZHANG Ming,LI Xindong,CHEN Yang,et al.The dynamic adsorption behavior and retention characteristics of rare earth ions by nano-filtration membrane[J].,2017,(04):105.[doi:10.13264/j.cnki.ysjskx.2017.06.017]
[4]罗智江,李丹,沈存花,等.纳滤浓缩稀土母液沉淀上清液的实验研究[J].有色金属科学与工程,2018,(02预):16.
 LUO Zhijiang,LI Dan,SHEN Cunhua,et al.Study on rare earth mother liquid precipitation by nanofiltration process[J].,2018,(04):16.
[5]罗智江,李丹,沈存花,等.纳滤浓缩稀土母液沉淀上清液的实验研究[J].有色金属科学与工程,2018,(02):109.[doi:10.13264/j.cnki.ysjskx.2018.02.018]
 LUO Zhijiang,LI Dan,SHEN Cunhua,et al.Experimental study on precipitating supernatant of rare earth mother liquor by nanofiltration[J].,2018,(04):109.[doi:10.13264/j.cnki.ysjskx.2018.02.018]
[6]田长顺,石亮.农业废弃物吸附稀土离子的研究进展[J].有色金属科学与工程,2019,(04):53.

备注/Memo

备注/Memo:
收稿日期:2019-04-22
基金项目:江西理工大学优秀博士论文培育项目资助(3105500029)
通信作者:田长顺(1983- ),男, 博士研究生, 讲师, 主要从事离子型稀土矿山环境与生态修复的研究工作, E-mail:tianchangshun@163.com.
更新日期/Last Update: 2019-08-22