|本期目录/Table of Contents|

[1]朱二涛,张久兴,杨新宇,等.Co对原位合成WC-6Co复合粉末制备高性能硬质合金的影响[J].有色金属科学与工程,2019,(06):31-39.[doi:10.13264/j.cnki.ysjskx.2019.06.006]
 ZHU Ertao,ZHANG Jiuxing,YANG Xinyu,et al.Research of Co in high performance cemented carbide produced from In-situ synthesis WC-6Co composite powder[J].,2019,(06):31-39.[doi:10.13264/j.cnki.ysjskx.2019.06.006]
点击复制

Co对原位合成WC-6Co复合粉末制备高性能硬质合金的影响(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2019年06期
页码:
31-39
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Research of Co in high performance cemented carbide produced from In-situ synthesis WC-6Co composite powder
文章编号:
1674-9669(2019)06-0031-09
作者:
朱二涛1 张久兴1 杨新宇1 潘亚飞1 羊建高2
(1.合肥工业大学,合肥 230009; 2.湖南顶立科技有限公司,长沙 410118)
Author(s):
ZHU Ertao1 ZHANG Jiuxing1 YANG Xinyu1 PAN Yafei1 YANG Jiangao2
(1. Hefei University of Technology, Hefei 230009, China; 2. Advanced Corporation for Materials & Equipment, Changsha 410118, China)
关键词:
原位合成WC-6Co复合粉超细硬质合金金相物理力学性能
分类号:
TG135.5
DOI:
10.13264/j.cnki.ysjskx.2019.06.006
文献标志码:
A
摘要:
将原位合成的WC-6Co复合粉末添加到300 L、转速50 Hz滚动球磨中湿磨,添加Co粉、晶粒长大抑制剂、石蜡、酒精,湿磨48 h,卸料、过孔径45 μm筛,采用闭式压力喷雾干燥塔制备得到WC-7Co~WC-15Co混合料粉末,对制备混合料粉末形貌、粒度分布、物相、成分进行分析,结果表明:添加Co粉配成WC-Co混合料,当混合料的Co质量分数超过10%,团聚现象明显增强,团聚颗粒明显增大;随着添加Co粉质量分数增加,混合料中氧质量分数增高,松装密度不断减小. 将制备得到的WC-7Co~WC-15Co混合料掺成型剂,挤压成型,低压烧结等工序制备超细YG7X~YG15X硬质合金. 研究添加不同Co质量分数WC-6Co复合粉末制备YG7X~YG15X超细硬质合金,Co对制备硬质合金的金相组织、形貌、物理力学性能的影响,结果表明:随着添加Co质量分数增加,制备的超细硬质合金硬度、密度不断降低,抗弯强度和断裂韧性先增大、后减小;制备的超细YG7X硬质合金的硬度最高HV30为2 150,抗弯强度最低为3 200 MPa;制备YG10超细硬质合金的抗弯强度最高为4 950 MPa,断裂韧性最高为11.8 MPa·m1/2.

参考文献/References:

[1] GANT A J , GEE M G . Wear modes in slurry jet erosion of tungsten carbide hardmetals: their relationship with microstructure and mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 2015, 49: 192-202.
[2] 文彦,张钦英,郭圣达,等. WC-6Co硬质合金的SPS烧结工艺[J]. 有色金属科学与工程, 2017, 8(3): 74-78.
[3] OU X Q , XIAO D H , SHEN T T , et al. Characterization and preparation of ultra-fine grained WC-Co alloys with minor La-additions[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31: 266-273.
[4] 张贺佳,陈礼清,王文广,等. 超细晶WC-10Co硬质合金制备的主要影响因素[J]. 有色金属科学与工程,2014, 5(6): 47-52.
[5] XIAO D H , HE Y H, SONG M , et al. Y2O3- and NbC-doped ultrafine WC-10Co alloys by low pressure sintering[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28: 407-411.
[6] GUO L , XIAO L R , ZHAO X J ,et al. Preparation of WC/Co composite powders by electroless plating[J]. Ceramics International, 2017 (43): 4076-4082.
[7] JAFARI M , ENAYATI M H , SALEHI M , et al. Microstructural evolution of nanosized tungsten carbide during heatup stage of sintering of electroless nickel-coated nanostructured WC-Co powder[J]. Ceramics International, 2014, 40(7B): 11031-11039.
[8] LIN H , TAO B W , LI Q , et al. In situ synthesis of WC-Co nanocomposite powder via core-shell structure formation[J]. Materials Research Bulletin, 2012, 47(11):3283-3286.
[9] YANG Q M, YANG J G , YANG H L, et al. Synthesis and characterization of WC-Co nanosized composite powders with insitu carbon and gas carbon sources[J]. Metals and Materials International, 2016, 22 (4): 663-669.
[10] GUO S D , YU F , ZHOU Y, et al. Investigation on reduction and carbonization process of WC-Co composite powder obtained by In situ synthesis[J]. Journal of Alloys and Compounds, 2019, 775: 1086-1093.
[11] 朱二涛,羊建高,戴煜,等. 喷雾干燥-煅烧制备钨钴氧化物粉末的反应机理[J]. 粉末冶金材料科学与工程,2015(2):175-181.
[12] GUO S D , BAO R , YANG P , et al. Morphology and carbon content of WC-6%Co nanosized composite powders prepared using glucose as carbon source[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (4):722-728.
[13] ZHU E T , ZHANG J X , GUO S D , et al. Effect of Co on morphology and preparation of in situ synthesis of WC-Co composite powders[J]. Materials Research Express, 2019, 6(8): 086522.
[14] CHEN H , YANG Q M , YANG J G , et al. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.%Co cemented carbides[J].Journal of Alloys and Compounds, 2017, 714: 245-250.
[15] LIN H , SUN J C, LI C H , et al . A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk[J]. Journal of Alloys and Compounds, 2016, 682: 531-536.
[16] XIAO T D , TAN X L , YI M Z , et al. Synthesis of commercial-scale Tungsten carbide-cobalt (WC/Co) nanocomposite using aqueous solutions of Tungsten (W), Cobalt (Co), and Carbon (C) precursors[J]. Journal of Materials Science and Chemical Engineering, 2014, 2(7): 1-15.
[17] 郭圣达,鲍瑞,刘亮,等. 原位合成复合粉制备超细WC-Co硬质合金[J]. 稀有金属材料与工程,2017, 43(12):3977-3982.
[18] SHI X L , SHAO G Q , DUAN X L , et al. Characterizations of WC-10Co nanocomposite powders and subsequently sinterhip sintered cemented carbide[J]. Materials Characterization, 2006, 57 (4): 358 -370.
[19] 徐涛. WC/Co纳米复合粉质量特性的研究[J].硬质合金,2011, 28(4):219-227.
[20] 赵继贤,张兴华,吴国根.硬质合金手册上册[M].株洲:中国钨业协会硬质合金分会,2009:9-19.
[21] 解明伟. 超细原料特性和湿磨工艺对WC-Co硬质合金微观结构和性能的影响[D]. 长沙:中南大学,2013:50-53.
[22] 吴冲浒,谢海唯,郑爱钦,等. Co含量与烧结温度对纳米晶WC-Co硬质合金结构与性能的影响[J].粉末冶金材料科学与工程,2013,
18(2):309-314.
[23] GARCIA J , CIPRESi V C , BLOMQVIST A , et al. Cemented carbide microstructures: a review[J]. International Journal of Refractory Metals & Hard Materials, 2019,80:40-68.

相似文献/References:

[1]高继兴,古志峰,杨昌善,等.咪唑基四唑FeII、CoII配合物的[2+3]原位合成、结构及性质研究[J].有色金属科学与工程,2015,(05):73.[doi:10.13264/j.cnki.ysjskx.2015.05.014]
 GAO Jixing,GU Zhifeng,YANG Changshan,et al.Synthesis, structures and properties of FeII, CoII-imidazolyl tetrazole compounds through in situ [2+3] synthesis[J].,2015,(06):73.[doi:10.13264/j.cnki.ysjskx.2015.05.014]

备注/Memo

备注/Memo:
收稿日期:2019-09-05
基金项目:国家自然科学基金资助项目(51572066)
通信作者:张久兴(1962— ),男,教授,博士生导师,长江学者,主要从事新型功能材料及其制备技术方面的研究。E-mail:zjiuxing@hfut.edu.cn
更新日期/Last Update: 2019-12-29