|本期目录/Table of Contents|

[1]李金锋,漆小鹏,王黎*,等.纳米碳材料在耐火材料上的研究进展[J].有色金属科学与工程,2020,(01):28-36.
 LI JingfengQI XiaopengWANG LiLOU YitaoLOU YitaoFANG HuiCAI Huiyuan.Research Progress of Carbon nanomaterials in Refractories[J].,2020,(01):28-36.
点击复制

纳米碳材料在耐火材料上的研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2020年01期
页码:
28-36
栏目:
出版日期:
2020-01-20

文章信息/Info

Title:
Research Progress of Carbon nanomaterials in Refractories
作者:
李金锋1漆小鹏1王黎*12楼轶韬1方辉1王江1蔡辉元1
( 1.江西理工大学,材料科学与工程学院, 江西 赣州 341000;2.洛阳理工学院,材料科学与工程学院,河南 洛阳 471023)
Author(s):
LI Jingfeng1QI Xiaopeng1WANG Li12LOU Yitao1LOU Yitao1FANG Hui1CAI Huiyuan1
(1.School of Material Science and EngineeringJiangxi University of Science and TechnologyGanzhou341000Jiangxi China2.School of Material Science and EngineeringLuoyang Institute of Science and TechnologyLuoyang471023Henan China)
关键词:
纳米碳材料耐火材料研究进展
分类号:
-
DOI:
-
文献标志码:
-
摘要:
由于纳米碳材料具有优异的力学性能、稳定的化学性能和热稳定性,因此纳米碳材料迅速成为广大研究者的研究热点并在诸多领域显示出广阔的应用前景。目前,纳米碳材料在耐火材料中的应用已取得了诸多的科研成果。本文总结了利用纳米碳材料改善耐火材料力学性能的研究成果,介绍了在耐火材料中引入纳米碳材料的方法,比如直接添加法和原位生长法。对比了不同引入纳米碳材料方法的优缺点。并对纳米碳材料在耐火材料行业的应用前景与发展趋势进行了展望。

参考文献/References:

[1]Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber[J]. Science, 2007, 318(5858):1892-1895.
[2]Dalton A B, Collins S, Mu?Oz E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003, 423(6941) :703-703.
[3]Roberts G S, Singjai P. Joining carbon nanotubes[J]. Nanoscale, 2011, 3(11):4503.
[4]Nessim, Gilbert D. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition[J]. Nanoscale, 2010, 2(8):1306-0.
[5]Xiao J R, B.A. Gama, Gillespie J W . An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes[J]. International Journal of Solids and Structures, 2005, 42(11-12):3075-3092.
[6]Meo M, Rossi M. Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling[J]. Composites Science & Technology, 2006, 66(11-12):1597-1605.
[7]Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696):666-669.
[8]Reddy C D , Rajendran S , Liew K M . Equilibrium configuration and continuum elastic properties of finite sized graphene[J]. Nanotechnology, 2006, 17(3):864-870.
[9]Lee C , Wei X , Kysar J W , et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science, 2008, 321(5887):385-388.
[10]Balandin A A , Ghosh S , Bao W , et al. Superior Thermal Conductivity of Single-Layer Graphene[J]. NANO LETTERS, 2008, 8(3):902-907.
[11]曾存峰, 田守信, 徐延庆. 含碳耐火材料用结合剂及新技术在低碳镁炭砖中的应用综述[J]. 洛阳耐火材料研究院建院40周年科技文集,2005,61-74.
[12]杨竞, 张秀华, 梅鸣华, et al. 含碳耐火材料的发展和应用[J]. 城市建设理论研究:电子版, 2015(3).
[13]Gokce AS, Gurcan C, Ozgen S, Aydin S. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks[J]. Ceramics International, 2008, 34(2): 323-330.
[14]Yamaguchi A, Zhang S, Yu J. Effect of refractory oxides on the oxidation of graphite and amorphous carbon[J]. Journal of the American Ceramic Society, 2010, 79(9):2509-2511
[15]Faghihi-Sani M A, Yamaguchi A. Oxidation kinetics of MgO–C refractory bricks[J]. Ceramics International, 2002, 28(8):835-839.
[16]Sadrnezhaad S K, Mahshid S, Hashemi B, et al. Oxidation Mechanism of C in MgO-C Refractory Bricks[J]. Journal of the American Ceramic Society, 2006, 89(4):1308-1316.
[17]王军凯, 邓先功, 张海军, et al. 碳纳米管增强碳复合耐火材料的研究进展[J]. 耐火材料, 2016, 50(2):150-154.
[18]Iijima, Sumio. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[19]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[20]Zhu T , Li Y , Sang S , et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO–C refractories[J]. Ceramics International, 2014, 40(3):4333-4340.
[21]Wang Q , Li Y , Luo M , et al. Strengthening mechanism of graphene oxide nanosheets for Al2O3–C refractories[J]. Ceramics International, 2014, 40(1):163-172.
[22]Zhu T , Li Y , Sang S , et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO–C refractories[J]. Ceramics International, 2014, 40(3):4333-4340.
[23]Maldhure A V, Wankhade A V. In-situ development of carbon nanotubes network and graphitic carbon by catalytic modification of phenolic resin binder in Al2O3–MgO–C refractories[J]. Journal of Asian Ceramic Societies, 2017,5(3):247-254.
[24]郭巍, 安胜利. 二茂铁的加入对铝碳耐火材料性能的影响[J]. 硅酸盐通报, 2007, 26(5):1011-1015.
[25]Wei G , Zhu B , Li X , et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin[J]. Ceramics International, 2015, 41(1):1553-1566.
[26]马世春, 韩俊华. 低碳Al2O3-C耐火材料研究的新进展[J]. 耐火材料, 2017,51(3):235-240.
[27]Liao N , Li Y , Jin S , et al. Enhanced Mechanical Performance of Al2O3-C Refractories With Nano Carbon Black and In-Situ Formed Multi-Walled Carbon Nanotubes (MWCNTs)[J]. Journal of the European Ceramic Society, 2015, 36(3):867-874.
[28]Luo M , Li Y , Sang S , et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3–C refractories with addition of Ni-catalyzed phenolic resin[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2012, 558(none):533-542.
[29]Li Y , Shan J , Liao N , et al. Enhanced thermal shock resistance of low-carbon Al2O3-C refractories with direct CVD synthesis of nano carbon decorated oxides[J]. Journal of the European Ceramic Society, 2018, 38(9):3379-3386.
[30]Luo M , Li Y , Sang S , et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3–C refractories with addition of Ni-catalyzed phenolic resin[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2012, 558(none):533-542.
[31]H.Rastegar, M.Bavand-vandchali, A.Nemati, F.Golestani-Fard.Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin[J].Ceramics International 2019,3:3390-3406.
[32]Li Q , Zhang Y , Gong H , et al. Enhanced Fracture Toughness of Pressureless-sintered SiC Ceramics by Addition of Graphene[J]. Journal of Materials Science & Technology, 2016,32(7):633-638.
[33]Belmonte M , Nistal, Andrés, Boutbien P , et al. Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers[J]. Scripta Materialia, 2016, 113:127-130.
[34]Candelario V M , Moreno R , Guiberteau F , et al. Enhancing the sliding-wear resistance of SiC nanostructured ceramics by adding carbon nanotubes[J]. Journal of the European Ceramic Society, 2016, 36(13):3083-3089.
[35]Feng W , Zhang L , Liu Y , et al. The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface[J]. Materials Science and Engineering: A, 2015, 637:123-129.

相似文献/References:

[1]张达菲,董建宏,汪金良,等.CeO2添加剂对Al2O3-MgO-CaO耐火材料致密化的影响[J].有色金属科学与工程,2019,(03):41.[doi:10.13264/j.cnki.ysjskx.2019.03.007]
 ZHANG Dafei,DONG Jianhong,WANG Jinliang,et al.Effect of additive CeO2 on the densification of Al2O3-MgO-CaO refractory[J].,2019,(01):41.[doi:10.13264/j.cnki.ysjskx.2019.03.007]
[2]李金锋,漆小鹏,王黎*,等.纳米碳材料在耐火材料上的研究进展[J].有色金属科学与工程,2020,(01):7.
 LI JingfengQI XiaopengWANG LiLOU YitaoLOU YitaoFANG HuiCAI Huiyuan.Research Progress of Carbon nanomaterials in Refractories[J].,2020,(01):7.
[3]李金锋,漆小鹏,王黎,等.纳米碳材料在耐火材料上的研究进展[J].有色金属科学与工程,2020,(01):39.[doi:10.13264/j.cnki.ysjskx.2020.01.007]
 LI Jinfeng,QI Xiaopeng,WANG Li,et al.Research progress in the application of carbon nanomaterials in refractories[J].,2020,(01):39.[doi:10.13264/j.cnki.ysjskx.2020.01.007]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(51874151);河南省高新技术领域科技攻关项目(152102210122)
更新日期/Last Update: 2019-11-20