|本期目录/Table of Contents|

[1]王有群,等.NaCl-CaCl2熔盐体系中电脱氧制备金属Fe的工艺研究[J].有色金属科学与工程,2020,(05):37-42.
 WANG,Youqun,LIN,et al.Preparation of Iron by Electrodeoxidation in NaCl-CaCl2 Molten salt system[J].,2020,(05):37-42.
点击复制

NaCl-CaCl2熔盐体系中电脱氧制备金属Fe的工艺研究(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2020年05期
页码:
37-42
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Preparation of Iron by Electrodeoxidation in NaCl-CaCl2 Molten salt system
作者:
王有群1 2林如山2何辉2王欢1刘云海1
1. 核资源与环境国家重点实验室(东华理工大学)
Author(s):
WANG Youqun12 LIN Rushan1 HE Hui2 WANG Huan1 LIU Yunhai 1*
1. State Key Laboratory of Nuclear Resources and Environment (East China University of Technology), Nanchang, 330013; 2. Department of Radiochemistry, China Institute of Atomic Energy, Beijing, 102413
关键词:
三氧化二铁熔盐电解还原FFC-剑桥工艺
分类号:
TG172.5
DOI:
-
文献标志码:
A
摘要:
在NaCl-CaCl2熔盐体系中采用FFC-剑桥工艺开展了Fe2O3电脱氧制备金属Fe的工艺研究。重点研究了烧结工艺和电解工艺等对熔盐中Fe2O3电脱氧过程的影响。采用SEM分析了烧结后Fe2O3的微观结构,采用XRD分析了电解前后产物的物相组成,得到了优化的电脱氧工艺条件为:槽电压为3.2 V,电解时间为8 h,烧结温度为800~900℃,粘结剂用量为1.5%~2.5%和电解温度为680~722℃。同时,在该熔盐体系中Fe2O3电脱氧机理为Fe2O3→Fe3O4→FeO→Fe。

参考文献/References:

[1] 周正. FFC剑桥工艺制备金属Ni及LaNi5合金[D]. 河北理工大学, 2008.

[2] WANG D H. Direct Reduction of Solid Fe 2O3 in Molten CaCl 2 by Potentially Green Process [J]. Journal of Materials Science and Technology, 2009, 25 (6): 767-771.

[3] LI H. Study on the Direct Electrochemical Reduction of Fe 2O3 in NaCl-CaCl 2 Melt [J]. International Journal of Electrochemical Science, 2019, 14(12): 11267-11278.

[4] 李晴宇, 杜继红, 奚正平, 等. 掺杂CaCO3对熔盐电脱氧制备金属锆的影响[J]. 稀有金属材料与工程, 2008, 37(S4): 537-541.

[5] WANG S L, Li S C, WAN L F. Electro-deoxidation of V2O3 in molten CaCl 2-NaCl-CaO[J]. 矿物冶金与材料学报, 2012, 19(3): 212-216.

[6] KANG X, QIAN X U SUJUAN M A, et al. Mechanistic Insight into Electrochemical Synthesis of LaNi5 in a Eutectic CaCl 2-NaCl Melt at 850°C[J]. Electrochemistry, 2009, 77(8): 663-666.

[7] 邱国红, 汪的华, 金先波, 等. 直接熔盐电化学还原固态Tb4O7-Fe2O3制备Tb2Fe17[J]. 金属学报, 2008(7): 859-862.

[8] ABDELKADER, A M, FRAY D J. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride[J]. Electrochimica Acta, 2012, 64: 10-16.

[9] MIN W L, EUNYOUNG C, SANG C J, et al. Enhanced electrochemical reduction of rare earth oxides in simulated oxide fuel via co-reduction of NiO in Li 2O-LiCl salt[J]. Electrochemistry Communications, 2016, 72: 23-26.

[10] 谢宏伟, 王锦霞, 金炳勋, 等. CaCl2熔盐中直接电化学还原制备铽-镝-铁合金机制[J]. 稀有金属材料与工程, 2012, 41(12): 2233-2237.

[11] 陈征, 赵兴科. 致密ZrO2陶瓷板表面金属层的熔盐电解法制备[J]. 稀有金属, 2018, 42(2): 175-181.

[12] LAI P, HU M, QU Z, et al. Initial Reactions at the Electrodes of the FFC-Cambridge Process in Molten CaCl2 to Produce Ti[J]. Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science, 2018, 49(6): 3403-3412 .

[13] 胡小锋, 许茜. CaCl2-NaCl熔盐电脱氧法制备金属Ta[J]. 金属学报, 2006(03): 285-289.

[14] SRI M V, N SANIL K S, MOHANDAS K.?Electrochemical characterisation of CaCl2 deficient LiCl–KCl–CaCl 2 eutectic melt and electro-deoxidation of solid UO 2[J]. Journal of Nuclear Materials, 2016, 470: 179-186.

[15] VISHNU D S, SANIL N, NAGARAJAN K, et al. Factors Influencing the Direct Electrochemical Reduction of Nb2O5 Pellets to Nb Metal in Molten Chloride Salts[J]. Acta Metallurgica Sinica (English Letters) 2017, 30 (3): 218-227.

相似文献/References:

[1]董素霞,邓彦夫.影响熔盐电解稀土金属中碳含量因素的研究[J].有色金属科学与工程,2001,(02):23.
 DONG Su-xia,DENG Yan-fu.The influence on the carbon content of RE metals in fusion electrowinning[J].,2001,(05):23.
[2]张选旭.电解法生产金属钕中非稀土杂质分析[J].有色金属科学与工程,1998,(03):41.
[3]廖春发,王坤,王旭,等.NaCl-CaCl2-CaWO4熔盐体系电导率的研究[J].有色金属科学与工程,2013,(05):19.
 LIAO Chun-fa,WANG Kun,WANG Xu,et al.Electrical conductivity of NaCl-CaCl2-CaWO4 molten salt system[J].,2013,(05):19.
[4]包莫日根高娃,王兆文,丁晨亮,等.铝液还原熔盐中ZrO2制备纯铝锆母合金[J].有色金属科学与工程,2014,(04):13.[doi:10.13264/j.cnki.ysjskx.2014.04.003]
 BAO Morigengaowa,WANG Zhaowen,DING Chenliang,et al.Preparation of pure Al-Zr master alloy from Al reducing ZrO2 dissolved in molten salt[J].,2014,(05):13.[doi:10.13264/j.cnki.ysjskx.2014.04.003]
[5]白鑫涛a,王锦霞b,谢宏伟a,等.非传统TiC合成研究进展[J].有色金属科学与工程,2014,(04):22.
 BAI Xin-taoa,WANG Jin-xiab,XIE Hong-weia,et al.Development of Non-Traditional methods for TiC[J].,2014,(05):22.
[6]白鑫涛a,王锦霞b,谢宏伟a,等.非传统TiC合成研究进展[J].有色金属科学与工程,2015,(01):59.[doi:10.13264/j.cnki.ysjskx.2015.01.011]
 BAI Xintaoa,WANG Jinxiab,XIE Hongweia,et al.Development of non-traditional TiC synthetic methods[J].,2015,(05):59.[doi:10.13264/j.cnki.ysjskx.2015.01.011]
[7]廖春发,王坤,王旭,等.NaCl-CaCl2-CaWO4熔盐体系电导率的研究[J].有色金属科学与工程,2016,(05预):1110.
 Liao Chunfa,Wang Kun,Wang Xu,et al.Conductivity of NaCl-CaCl2-CaWO4 Molten Salt System[J].,2016,(05):1110.
[8]马尚润.流水线镁电解熔盐体系密度的研究[J].有色金属科学与工程,2017,(01预):42.
 MA Shangrun.Study on density of molten salt system of flow line magnesium electrolysis[J].,2017,(05):42.
[9]杨凤丽,王浩然,杨少华,等.LiF-SrF2-SrO熔盐体系中Sr2+电化学行为的研究[J].有色金属科学与工程,2016,(05):33.[doi:10.13264/j.cnki.ysjskx.2016.05.006]
 YANG Fengli,WANG Haoran,YANG Shaohua,et al.Electrochemical behavior of Sr2+ in LiF-SrF2-SrO molten salt system[J].,2016,(05):33.[doi:10.13264/j.cnki.ysjskx.2016.05.006]
[10]包莫日根高娃,王兆文,高炳亮,等.简便高效的测定熔盐电导率的新方法[J].有色金属科学与工程,2016,(06):8.[doi:10.13264/j.cnki.ysjskx.2016.06.002]
 BAO Morigengaowa,WANG Zhaowen,GAO Bingliang,et al.Simple and highly effective new way of measuring electrical conductivity of molten salts[J].,2016,(05):8.[doi:10.13264/j.cnki.ysjskx.2016.06.002]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-09-18