|本期目录/Table of Contents|

[1]钟海,张倬,佘雪峰,等.稀土铈在电催化水分解中的应用研究进展[J].有色金属科学与工程,2020,(05):49-54.
 ZHONG Hai,ZHANG Zhuo,SHE Xuefeng,et al.Application of rare earth cerium element in electrocatalytic water splitting[J].,2020,(05):49-54.
点击复制

稀土铈在电催化水分解中的应用研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2020年05期
页码:
49-54
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Application of rare earth cerium element in electrocatalytic water splitting
作者:
钟海1 张倬2 佘雪峰1 王静松1 薛庆国1
(1.北京科技大学钢铁冶金新技术国家重点实验室,北京100083; 2. 曲阜师范大学物理工程学院,曲阜273165)
Author(s):
ZHONG Hai 1 ZHANG Zhuo 2 SHE Xuefeng 1 WANG Jingsong 1 XUE Qingguo 1
(1.State Key Laboratory of Advanced Metallurgy, University of Science and Technology, Beijing, Beijing 100083, China2.School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China)
关键词:
电解水氢气过电位电催化材料
分类号:
-
DOI:
-
文献标志码:
A
摘要:
氢气(H2)热值高、无污染,可以有效缓解日益严重的能源和环境危机;高效的电解水催化材料可以极大的降低水分解成氢气和氧气的过电位,提升水的分解效率。稀土元素铈(Ce)具有较强的氧化还原能力,将Ce引入电解水催化材料中可大幅提高电催化材料的催化效率,目前该类材料已经得到了国内外学者的广泛关注。文中主要介绍了Ce在纳米颗粒修饰、骨架、氢氧化物以及金属有机框架等方面构筑电催化材料,归纳了国内外含Ce催化材料在析氢反应与析氧反应中电催化性能和机理的研究进展,针对Ce或其他稀土元素在电催化材料中的应用进行了展望。

参考文献/References:

[1].ZHU Y P, GUO C X, ZHENG Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research, 2017, 50(4): 915-923.
[2].SIVANANTHAM P, GANESAN P, SHAANMUGAM S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016, 26(26): 4661-4672.
[3].PU Z H, LUO Y L, ASIRI A M, et al. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4718-4723.
[4].姚俊杰,唐佳易,杨志娟,等.电解水制氢中钌基电催化剂的研究进展[J].电池工业,2019,23(03):151-156.
[5].ZHANG Q T, WANG Y H, WANG Y C, et al. Myriophyllum-like hierarchical TiN@Ni3N nanowire arrays for bifunctional water splitting catalysts[J]. Journal of Materials Chemistry A, 2016, 4(15): 5713-5718.
[6].TANG C, CHENG N Y, PU Z H, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355.
[7].LU X Y, YIM W L, SURYANTO B H R, et al. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes[J]. Journal of the American Chemical Society, 2015, 137(8): 2901-2907.
[8].GONG M, WANG D Y, CHEN C C, et al. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J]. Nano Research, 2016, 9(1): 28-46.
[9].REIER T, OEZASLAN M, STRASSER P, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012, 2(8): 1765-1772.
[10].CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability[J]. Catalysis Today, 2016, 262: 170-180.
[11].ZHANG L, XIONG K, NIE Y, et al. Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst[J]. Journal of Power Sources, 2015, 297: 413-418.
[12].CHEN W Y, WANG C H, SASAKI K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy & Environmental Science, 2013, 6(3): 943-951.
[13].苏兰. 镍铁复合材料的调控及其电解水阳极催化机理的研究[D].重庆:西南大学,2018.
[14].SHE Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
[15].NING Y Y, MA D D, SHEN Y, et al. Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@ NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media[J]. Electrochimica Acta, 2018, 265: 19-31.
[16].SU L, DU H, TANG C, et al. Borate-ion intercalated NiFe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation[J]. Journal of Colloid and Interface Science, 2018, 528: 36-44.
[17].SONG F, XU X L, Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2014, 136(47): 16481-16484.
[18].RODRIGUEZ J A, GRINTER D C, LIU Z Y, et al. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming[J]. Chemical Society Reviews, 2017, 46(7): 1824-1841.
[19].ZHAN W C, GUO Y, GONG X Q, et al. Current status and perspectives of rare earth catalytic materials and catalysis[J]. Chinese Journal of Catalysis, 2014, 35(8): 1238-1250.
[20].SHENG W C, GASTEIGER H A, SHAO-HOM Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes[J]. Journal of the Electrochemical Society, 2010, 157(11): B1529-B1536.
[21].ZENG K, ZHANG D K, Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science,2010, 36(3): 307-326.
[22].宁瑶瑶. Ni-Co基纳米阵列的构筑及其电催化性能的研究[D].天津:天津大学,2018.
[23].WANG Z, DU H T, LIU Z, et al. Interface engineering of a CeO2–Cu3P nanoarray for efficient alkaline hydrogen evolution[J]. Nanoscale, 2018, 10(5): 2213-2217.
[24].JARAMILLO T F, JORGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS 2 nanocatalysts [J]. Science, 2007, 317(5834): 100-102.
[25].ZHANG R, REN X, HAO S, Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis[J]. Journal of Materials Chemistry A, 2018, 6(5): 1985-1990.
[26].ROLDAN CUENYA B. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects[J]. Thin Solid Films, 2010, 518(12): 3127-3150.
[27].GAO T Y, YANG J, NISHIJIMA M, et al. Evidence of the Strong Metal Support Interaction in a Palladium-Ceria Hybrid Electrocatalyst for Enhancement of the Hydrogen Evolution Reaction[J]. Journal of the Electrochemical Society, 2018, 165(14): F1147-F1153.
[28].WENG ZHE, LIU WEN, YIN L C, et al. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis[J]. Nano Letters, 2015, 15(11): 7704-7710.
[29].MA T Y, DAI S, JARONIEC M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931.
[30].WANG J, ZHONG H X, QIN Y L, et al. An efficient three-dimensional oxygen evolution electrode[J]. Angewandte Chemie-International Edition, 2013, 52(20): 5248-5253.
[31].BURKE M S, ZOU S H, ENMAN L J, et al. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy) hydroxides in alkaline media[J]. The Journal of Physical Chemistry Letters, 2015, 6(18): 3737-3742.
[32].FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014, 4(11): 3800-3821.
[33].YU J F, MARTIN B R, CLEARFIELD A, et al. One-step direct synthesis of layered double hydroxide single-layer nanosheets[J]. Nanoscale, 2015, 7(21): 9448-9451.
[34].FENG J X, YE S H, XU H, et al. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J]. Advanced Materials, 2016, 28(23): 4698-4703.
[35].LIU Z Q, LI N, ZHAO H Y, et al. Regulating the active species of Ni (OH)2 using CeO 2: 3D CeO2/Ni (OH)2/carbon foam as an efficient electrode for the oxygen evolution reaction[J]. Chemical Science, 2017, 8(4): 3211-3217.
[36].XU H J, WANG B K, SHAN C F, et al. Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6336-6345.
[37].WANG B K, XI P X, SHAN C F, et al. In Situ Growth of Ceria on Cerium–Nitrogen–Carbon as Promoter for Oxygen Evolution Reaction[J]. Advanced Materials Interfaces, 2017, 4(13): 1700272.
[38].GUAN B Y, YU X Y, WU H B, et al. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion[J]. Advanced Materials, 2017, 29(47): UNSP1703614.
[39].GUAN C, LIU X M, ELSHAHAWY A M, et al. Metal-organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons, 2017, 2(6): 342-348.
[40].JIAO L, WANG Y, JIANG H L, et al. Metal–organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018, 30(37): 1703663.
[41].XU H J, CAO J, SHAN C F, et al. MOF ‐derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis[J]. Angewandte Chemie-International Edition, 2018, 57(28): 8654-8658.
[42].ZHANG M, HUANG Y L, WANG J W, et al. A facile method for the synthesis of a porous cobalt oxide–carbon hybrid as a highly efficient water oxidation catalyst[J]. Journal of Materials Chemistry A, 2016, 4(5): 1819-1827.
[43].XU H J, YANG Y W, YANG X X, et al. Stringing MOF-derived nanocages: a strategy for the enhanced oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(14): 8284-8291.
[44].王柄凯. 稀土复合水滑石基非均相催化剂的设计合成及性质研究[D].兰州:兰州大学,2019.
[45].WU X X, YANG Y W, ZHANG T, et al. CeOx-Decorated Hierarchical NiCo2S4 Hollow Nanotubes Arrays for Enhanced Oxygen Evolution Reaction Electrocatalysis[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39841-39847.
[46].ZHENG Y R, GAO M R, GAO Q, et al. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation[J]. Small, 2015, 11(2): 182-188.
[47].OBATA K, TAKANABE K. A Permselective CeOx Coating Improves the Stability of Oxygen Evolution Electrocatalysts[J]. Angewandte Chemie, 2018, 57(6): 1616-1620.
[48].KIM J H, SHIN K, KAWASHIMA K, et al. Enhanced activity promoted by CeOx on a CoOx electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2018, 8(5): 4257-4265.
[49].CODOLA Z, GOMEZ L, KLEESPIES S T, Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation[J]. Nature Communications, 2015, 6: 5865.
[50].CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.

相似文献/References:

[1]罗序燕,夏美林,任力理,等.偶氮胂Ⅲ褪色光度法测定锡铈合金镀液中的铈[J].有色金属科学与工程,2012,(05):78.
 LUO Xu-yan,XIA Mei-lin,REN Li-li,et al.Determination of cerium amount in the tin-cerium alloy plating bath by discoloring spectrophotometry of arsenazo Ⅲ[J].,2012,(05):78.
[2]谢志鹏,蔡定建,杨亮.锌铈液流电池研究进展[J].有色金属科学与工程,2014,(01):42.
 XIE Zhi-peng,CAI Ding-jian,YANG Liang.Research progress of zinc-cerium redox flow battery[J].,2014,(05):42.
[3]彭光怀,杜西龙,郭华彬,等.烧结温度对Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95磁体组织与性能的影响[J].有色金属科学与工程,2016,(05预):250.
 PENG Guanghuai,DU Xilong,GUO Huabin,et al..95 magnet[J].,2016,(05):250.
[4]谢志鹏,蔡定建,杨亮.锌铈液流电池研究进展[J].有色金属科学与工程,2016,(05预):1040.
 XIE Zhi-peng,CAI Ding-jian,YANG Liang.Research progress of zinc-cerium redox flow battery[J].,2016,(05):1040.
[5]彭光怀,杜西龙,郭华彬,等.烧结温度对Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95磁体组织与性能的影响[J].有色金属科学与工程,2016,(02):135.[doi:10.13264/j.cnki.ysjskx.2016.02.024]
 PENG Guanghuai,DU Xilong,GUO Huabin,et al.Effect of sintering temperature on microstructure and properties of Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95 magnet[J].,2016,(05):135.[doi:10.13264/j.cnki.ysjskx.2016.02.024]
[6]邱鑫乐,孟龙,钟怡玮*,等.超重力对镍电极电解制氢的强化研究[J].有色金属科学与工程,2018,(06):11.[doi:10.13264/j.cnki.ysjskx.2018.06.002]
 QIU Xinle,MENG Long,ZHONG Yiwei,et al.Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis[J].,2018,(05):11.[doi:10.13264/j.cnki.ysjskx.2018.06.002]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-09-18