|本期目录/Table of Contents|

[1]于博渊,张家靓,杨成,等.废加氢催化剂中有价金属回收技术研究进展[J].有色金属科学与工程,2020,(05):79-84.
 YU Boyuan,ZHANG Jialiang,YANG Cheng,et al.Research advances on valuable metals recovery from spent hydrogenation catalyst[J].,2020,(05):79-84.
点击复制

废加氢催化剂中有价金属回收技术研究进展(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2020年05期
页码:
79-84
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Research advances on valuable metals recovery from spent hydrogenation catalyst
作者:
于博渊1张家靓13杨成1王丽华1陈永强13王成彦123
(1.北京科技大学冶金与生态工程学院,北京 10008 3; 2 .江西理工大学材料冶金化学学部,江西 赣州 341000; 3 .稀贵金属绿色回收与提取北京市重点实验室,北京 10008 3)
Author(s):
YU Boyuan1 ZHANG Jialiang13 YANG Cheng1 WANG Lihua1 CHEN Yongqiang 13 WANG Chengyan123
(1. School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing 100089, China; 2. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3. Beijing Key Laboratory of Green Recycling and Extraction of Metals, Beijing 100089, China)
关键词:
废加氢催化剂有价金属回收火法熔炼富集金属
分类号:
-
DOI:
-
文献标志码:
A
摘要:
随着石化行业对加氢催化剂的需求量逐年递增,每年报废的加氢催化剂量也与日俱增。废加氢催化剂中含大量有价金属,其循环利用对于环境保护和资源的高效利用意义重大。针对废加氢催化剂中有价金属的回收,国内外学者开展了大量的研究工作,开发的工艺主要分为湿法、火法和火法湿法联合工艺3大类。详细综述了近年来废加氢催化剂回收的研究进展,重点分析了不同技术的主要过程、原理及其优缺点。针对传统回收技术的不足,提出采用火法还原熔炼将废加氢催化剂中的有价金属富集,并采用湿法工艺处理多金属合金的技术流程。论文对废加氢催化剂回收的发展趋势及前景进行了展望。

参考文献/References:

[1] AKCIL A, VEGLIO F, FERELLA F, et al. A review of metal recovery from spent petroleum catalysts and ash[J]. Waste Management, 2015, 45:420-433.

[2] 孙晓雪, 刘仲能, 杨为民. 废弃负载型加氢处理催化剂金属回收技术进展[J]. 化工进展, 2016, 35(6):1894-1904.

[3] YANG Q Z, QI G J, LOW H C, et al. Sustainable recovery of nickel from spent hydrogenation catalyst: economics, emissions and wastes assessment[J]. Journal of Cleaner Production, 2011, 19(4):365–375.

[4] 孙毓韬, 李雪莲. 镍基废催化剂回收及再利用的科学研究[J]. 硅谷, 2014, 7(18):188+205.

[5] 邬建辉, 王刚, 张文宏, 等. 含钨钼废催化剂回收工艺研究进展[J]. 中国资源综合利用, 2013, 31(8):42-45.

[6] 谢美求, 陈坚, 熊学良, 等. 废钨-镍型加氢催化剂中综合回收有价金属的研究[J]. 金属材料与冶金工程, 2007, 35(5):10-14.

[7] PINTO I S S, SASEGHI S M, IZATT N E, et al. Recovery of metals from an acid leachate of spent hydrodesulphurization catalyst using molecular recognition technology[J]. Chemical Engineering Science, 2015, 138:353-362.

[8] ZENG L, CHENG C Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part I: Metallurgical processes[J]. Hydrometallurgy, 2009, 98(1): 1-9.

[9] ERUST C, AKCIL A, BEDELOVA Z, et al. Recovery of vanadium from spent catalysts of sulfuric acid plant by usinginorganic and organic acids: laboratory and semi-pilot tests[J]. Waste Manag, 2016, 49:455-461.

[10] FERELLA F, OGNYANOVA A, MICHELIS I D, et al. Extraction of metals from spent hydrotreating catalysts: physico-mechanical pre-treatments and leaching stage[J]. Journal of Hazardous Materials, 2011, 192:176-185.

[11] SRIVASTAVA R R, MITTAL N K, PADH B, et al. Removal of tungsten and other impurities from spent HDS catalyst leach liquor by an adsorption route[J]. Hydrometallurgy, 2012, 127–128:77-83.

[12]丁云集, 张深根. 废催化剂中铂族金属回收现状与研究进展[J]. 工程科学学报, 2020, 42(3):257-269.

[13] MOOSAKAZEMI F, TAVAKOLI M M R, Z AKERI M, et al. Development of an environmentally friendly flowsheet for the hydrometallurgical recovery of nickel and aluminum from spent methanation catalyst[J]. Journal of Cleaner Production, 2020, 244:118731-118731.

[14] IDRIS J, MUSA M, YIN C Y, et al. Recovery of nickel from spent catalyst from palm oil hydrogenation process using acidic solutions[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(2):251–255.

[15] 许礼刚. 废钨回收产业的价值和发展模式探析[J]. 有色金属科学与工程, 2013, 4(05):113-116.

[16] 赵檀, 董春明. 炼油加氢废催化剂中金属分离回收工艺分析[J]. 科技展望, 2016, 26(31):48.

[17] GAROLE D J, SAWANT A D. Recovery of nickel from spent catalyst from palm oil hydrogenation process using acidic solutions[J]. Research Journal of Chemical Sciences, 2012, 2(12):27-30.

[18] XU A Y, YE T, ZHAO S H. Recovery of Valuable Metals from Spent Hydrogenation Catalysts[J]. Applied Mechanics and Materials, 2013, 440:97–103.

[19] 肖连生. 中国钨提取冶金技术的进步与展望[J]. 有色金属科学与工程, 2013, 4(05):6-10.

[20] 林世雄. 石油炼制工程(下). 北京石油工业出版社[M], 1988:661-665.

[21] MARAFI M, STANISLAUS A. Spent hydroprocessing catalyst management: A review. Part II. Advances in metal recovery and safe disposal methods[J]. Resources, Conservation and Recycling, 2008, 53:1-26.

[22] BEOLCHINI F V, FONTI F, FERELLA, et al. Metal recovery from spent refinery catalysts by means of biotechnological strategies[J]. Journal of Hazardous Materials, 2010, 178:529–534.

[23] SIEMENS R E, JONG B W, RUSSELL J H. Potential of spent catalysts as a source of critical metals[J]. Conservation and Recycling, 1986, 9(2):89-96.

[24] RUIZ V, MEUX E, SCHNEIDER M, et al. Hydrometallurgical treatment for valuable metals recovery from spent CoMo/Al2O3 Catalyst. 2. Oxidative leaching of an unroasted catalyst using H 2O2[J]. Industrial & Engineering Chemistry Research, 2011, 50:5307-5315.

[25] ROCCHETTI L, FONTI V F, VEGLIO, et al. An environ-mentally friendly process for the recovery of valuable metals from spent refinery catalysts[J]. Waste Management and Research, 2013, 31:568-576.

[26] VEAL J T, ANDERSEN K A, KOWALESKI R M. Process to recover metals from spent catalyst. US: 6180072[P]. 2001.

[27] LAI Y C, LEE W J, HUANG K L, et al. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process[J]. Journal of hazardous materials, 2008, 154:1-3.

[28] RABAH M A, HEWAIDY I F, FARGHALY F E. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst[J]. Powder Metallurgy, 1997, 40:283-288.

[29] BEUTHER H, FLINN R A. Technique for removing metal contaminants from catalysts[J]. Industrial & Engineering Chemistry Product Research and Development, 1963, 2:53-57.

[30] MULAK W, SZYMCZYCHA A, LESNIEWICZ A, et al. Preliminaryresults of metals leaching from a spent hydrodesulphurization (HDS) catalyst[J ].Physicochemical Problems of Min- eral Processing, 2006, 40:69-76 .

[31] ROJAS-RODRIGUEZ A D, FLORES-FAJARDO O, GONZALEZ F S A, et al. Chemical treatment to recover molybdenum and vanadium from spent heavy gasoil hydro-desulfurization catalyst[J]. Advances in Chemical Engineering and Science, 2012, 2:408-412.

[32] VILLARREAL S M, KHARISOV B I, TORRES M L M, et al. Recovery of vanadium and molybdenum from spent petroleum catalyst of PEMEX[J]. Industrial Engineering Chemistry Research, 1999, 38:4624-4628.

[33] ISABEL S S, PINTO H, SOARES M V M. Selective leaching of molybdenum from spent hydrodesulphurisation catalysts using ultrasound and microwave methods[J]. Hydrometallurgy, 2012, 129-130 :19-25.

[34] ZHAO Z, GUO M, ZHANG M. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method[J]. Journal of Hazardous Materials, 2015, 286:402–409.

[35] PARK K H, MOHAPATRA D, REDDY B R. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method[J]. Journal of Hazardous Materials, 2006, 138:311-316.

[36] WANG L, CHAO L, QU W W, et al. Ultrasound-assisted oil removal of γ-Al2O3-based spent hydrodesulfurization catalyst and microwave roasting recovery of metal Mo[J].Ultrasonics Sonochemistey, 2018, 49:24-32.

[37] MARAFI M, STANISLAUS A, ABSI-HALABI M. Heavy oil hydro-treating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents[J]. Applied Catalysis B:Environmental, 1994, 4:19-27.

[38] VALVERDE I M, PAULINO J F J, AFONSO J C. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium[J]. Journal of Hazardous Materials, 2008, 160:310-317.

[39] 彭人勇, 魏继宽. 从废镍催化剂中酸浸镍试验研究[J]. 湿法冶金, 2019, 38(4):287-290.

[40] MARAFI M, RANA M S. Metal leaching from refinery waste hydroprocessing catalyst[J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53:951-959.

[41] GUTNIKOV G. Method of recovering metals from spent hydrore-fining catalysts. US: 3567433[P]. 1971.

[42] ROKUKAWA N. Method for selective recovery of molybdenum and vanadium values from spent catalysts. US: 4382068[P]. 1983.

[43] ASGHARI I, MOUSAVI S M, AMIRI F, et al. Bioleaching of spent refinery catalysts: A review[J]. Journal of Industrial and Engineering Chemistry, 2013, 19:1069-1081.

[44] SUZUKI I. Microbial leaching of metals from sulfide minerals[J]. Biotechnology Advances, 2001, 19:119-132.

[45] MISHRA D, KIM D J, RALPH D E, et al.Bioleaching of spent hydro-processing catalyst using acidophilic bac- teria and its kinetics aspect[J]. Journal of Hazardous Materials, 2008, 152:1082-1091.

[46] TANG K, BASKARAN V, NEMATI M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal, 2009, 44:73-94.

[47] MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs[J]. Hydrometallurgy, 2007, 88:202-209.

[48] KIM D J, SRICHANDAN H, GAHAN C S, et al. Thermophilic bioleaching of spent petroleum refinery catalyst using Sulfolobus metallicus[J]. Canadian Metallurgical Quarterly, 2012, 51:403-412.

[49] MISHRA D, AHN J G, KIM D J, et al. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms[J]. Journal of Hazardous Materials, 2009, 167:1231-1236.

[50] PRADHAN D, MISHRA D, KIM D J, et al. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles[J]. Journal of Hazardous Materials, 2010, 175:267-273.

[51] 朱兆鹏, 杨夫清, 梁宗跃, 等. 用等离子炉处理含钼废催化剂回收有价金属的研究[J]. 中国钼业, 2003, 3:14 -16.

[52] CANHAM D L, AURICH V G. Recovery of metals from spent catalysts in a DC plasma furnace[J]. Institution of Mining and Metallurgy, 1991, 241-247.

[53] PAK J J, KIM D H, PAEK M K, et al. Ferroalloy Production from Spent Petroleum Catalysts by Reductive Smelting and Selective Oxidation Processes[J]. REWAS 2019, 2019, 167-175.

[54] HOWARD R A, BARNES, W R. Smelting process for recovery of valuable metals from spent catalysts on an oxide support. US: 5013533[P]. 1991.

[55] 王尔勤, 杨国安, 华启峰. 含钼废料回收钼的化学方法和实践[J]. 中国钼业, 1998, 3:32-33.

[56] VINCENT R, ERIC MEUX, SEBASTIEN D, et al. Hydrometallurgical Treatment for Valuable Metals Recovery from Spent CoMo/Al2O3 Catalyst. 1. Improvement of Soda Leaching of an Industrially Roasted Catalyst[J] . Industrial & Engineering Chemistry Research, 2011, 50(9):5295-5306.

[57] 张智, 高严, 刘玉珍. 含钼加氢精制废催化剂中金属钼的回收工艺研究[J]. 辽宁化工, 1998, 4:58-60.

[58] CHOI I H, KIM H R, MOON G, et al. Spent V2O5-WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching[J]. Hydrometallurgy, 2018, 175:292-299.

[59] KAR B B, DATTA P, MISRA V N. Spent catalyst: secondary source for molybdenum recovery[J]. Hydrometallurgy, 2004, 72:87-92.

[60] HUANG S B, ZHAO Z W, CHEN X Y et al. Alkali extraction of valuable metals from spent Mo–Ni/Al2O3 catalyst[J]. International Journal of Refractory Metals and Hard Materials, 2014, 46:109-116.

[61] 胡建锋, 朱云, 胡汉. 从废催化剂中综合提取钒和钼[J]. 稀有金属, 2006, 5:711-714.

[62] MIHASHI T, MOTOMURA H, TAKEUCHI H. Recovering processes of valuable metals from spent petroleum hydrodesulphurisation catalysts. Japan: 57022119[P]. 1982.

[63] HO E M. Recovery of metals from spent catalysts[D]. Honours Thesis, Murdoch University, Perth, Australia, 1992.

[64] HONG I K, KYUNG H P, DEVABRATA M. Influence of sulfuric acid baking on leaching of spent Ni–Mo/Al2O3 hydro-processing catalyst[J]. Hydrometallurgy, 2009, 98:192-195.

[65] ILHAN S. Extraction of molybdenum, nickel and aluminium from spent Ni–Mo hydrodesulphurization (HDS) catalyst in oxalic acid solutions[J]. Canadian Metallurgical Quarterly, 2020, 59:26-35.

[66] 刘润静, 李小云, 郭春. 从钴—钼废催化剂中回收钼的研究[J]. 无机盐工业, 1996(2):34-36.

[67] 陈兴龙, 肖连生, 徐劼, 等. 从废石油催化剂中回收钒和钼的试验研究[J]. 矿冶工程, 2004(3):47-49.

[68] YE X L, GUO S H, QU W W, et al. Microwave sodium roasting (MWSR) spent HDS catalysts for recovery Mo and in situ sulfur fixation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97:146-157.

[69] YARAS A, ARSLANOGLU H. Extraction of selected metals from spent hydrodesulfurization catalyst using alkali leaching agent[J]. Separation Science and Technology, 2019, 1-12.

[70] PARKINSON G, ISHIO S. Recyclers try new ways to process spent catalysts[J]. Chemical Engineering, 1987, 94:25-31.

[71] ZHANG J L, YANG C, CHEN Y Q, et al. E?cient Phase Transformation of γAl2O3 to αAl 2O3 in Spent Hydrodesulphurization Catalyst by Microwave Roasting Method[J] . Industrial & Engineering Chemistry Research, 2019, 58:1495-1501.

相似文献/References:

[1]胡少华.铜阳极泥中金银及有价金属的回收[J].有色金属科学与工程,1999,(03):37.
[2]曾伟民,朱海珍,叶子婕,等.生物湿法冶金技术回收废弃线路板中有价金属的研究进展[J].有色金属科学与工程,2013,(01):26.
 ZENG Wei-min,ZHU Hai-zhen,YE Zi-jie,et al.Review on recovering precious metals from wasted circuit board by bio-hydrometallurgy technology[J].,2013,(05):26.
[3]刘会莲.从含钪炉渣中提取氧化钪研究通过鉴定[J].有色金属科学与工程,1990,(02):17.
[4].大吉山矿小改小革经常化[J].有色金属科学与工程,1989,(03):66.
[5]彭支乾.大吉山钨矿银、铋等的综合回收[J].有色金属科学与工程,1988,(02):30.
[6]曾伟民*,朱海珍,叶子婕,等.生物湿法冶金技术回收废弃线路板中有价金属的研究进展[J].有色金属科学与工程,2016,(05预):1375.
 Zeng Weimin,Zhu Hai-zhen,YE Zi-jie,et al.Review on the research of precious metals recovery from wasted circuit board by biohydrometallurgy technology[J].,2016,(05):1375.
[7]江晓健,刘静欣,严康,等.中国电子废弃物产生量预测及金属积存量特征分析[J].有色金属科学与工程,2016,(05):104.[doi:10.13264/j.cnki.ysjskx.2016.05.019]
 JIANG Xiaojian,LIU Jingxin,YAN Kang,et al.Prediction of electronic waste amount and metal cumulative amount features[J].,2016,(05):104.[doi:10.13264/j.cnki.ysjskx.2016.05.019]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-09-18