|本期目录/Table of Contents|

[1]黄晶明,张晓虎,田亚斌,等.Nd(III)在NaF-KF熔盐钨电极上电化学行为[J].有色金属科学与工程,2020,(05):85-90.
 HUANG Jingming,ZHANG Xiaohu,TIAN Yabin,et al.Electrochemical behavior of Nd (III) on tungsten electrode in NaF-KF molten salt[J].,2020,(05):85-90.
点击复制

Nd(III)在NaF-KF熔盐钨电极上电化学行为(/HTML)
分享到:

《有色金属科学与工程》[ISSN:1674-9669/CN:36-1311/TF]

卷:
期数:
2020年05期
页码:
85-90
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Electrochemical behavior of Nd (III) on tungsten electrode in NaF-KF molten salt
作者:
黄晶明张晓虎田亚斌叶昌美石忠宁杨少华*
(江西理工大学材料冶金化学学部,江西赣州,341000)
Author(s):
HUANG Jingming ZHANG Xiaohu TIAN Yabin YE Changmei SHI ZhongningYANG Shaohua
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Jiangxi Ganzhou 341000, China
关键词:
钕铁硼废料Nd(III)电化学还原扩散系数
分类号:
TF845.6
DOI:
-
文献标志码:
-
摘要:
钕铁硼磁体中稀土元素钕占据较大比重,从钕铁硼废料回收稀土有重大意义。为进一步了解钕在高温下氟化物熔盐的行为,本论文在1063 K采用NaF-KF(摩尔比2:3)电解质体系,加入质量分数为1%的NdF3 ,以Pt为参比电极,钨棒为对电极,用循环伏安法等电化学暂态测试研究了Nd(III)在惰性钨电极上的电化学过程,探究Nd(III)的还原机理。结果显示:Nd(III)于NaF-KF-NdF3熔盐中在惰性钨电极上的电化学还原过程是受扩散控制的不可逆的1步反应:Nd(III)+3e-=Nd,1063 K时循环伏安法得到Nd(III)的扩散系数为2.107×10-5 cm2/s,钕的成核机制为瞬时成核。

参考文献/References:

[1]. MADALIN G,ALIN B,FLAVIUS V,et al. Bifunctional LaxNdyGdzSc4?x?y?z(BO3)4 crystal: Czochralski growth, linear and nonlinear optical properties, and near-infrared laser emission performances[J]. Optics and Laser Technology,2020,131,106433.
[2]. 黄祥云,何磊,曾亮亮,等. 晶界扩散Dy60Co35Ga5合金对烧结钕铁硼磁体磁性能及热稳定性的影响[J]. 有色金属科学与工程, 2019, 10(2):108-113.
[3]. 李家节,郭诚君,周头军,等. 烧结钕铁硼磁体溅射渗镝工艺与磁性能研究[J]. 材料导报, 2017(4):17-20.
[4]. 刘卫强,查善顺,岳明,等. 高矫顽力烧结钕铁硼永磁研究进展[J]. 北京工业大学学报, 2017(10):126-138.
[5]. Chen J,Yang H,Xu G,et al. Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances[J]. Surface & Coatings Technology,2020.
[6].KOMAL H., PETER K S., ANDREAS P V., et al. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach [J]. Environmental Science & Technology, 2014, 48: 12229–12237.
[7]. SPRECHER B., KLEIJN R., KRAMER G.J. Recycling potential of neodymium: The case of computer hard disk drives [J]. Environmental Science & Technology, 2014, 48: 9506–9513.
[8]. 郭诚君,李家节,饶先发,等.烧结Nd-Fe-B磁体腐蚀动力学行为研究[J].有色金属科学与工程,2016,(01):59.
[9]. CUCCHIELLA F., ADAMO I., LENNY K S.C., et al. Recycling of WEEEs: An economic assessment of present and future e-waste streams [J]. Renewable and Sustainable Energy Reviews, 2015, 51: 263-272.
[10].HUA Z., WANG J., WANG L., et al. Selective extraction of rare earth elements from Nd Fe B scrap by molten chlorides [J]. Acs Sustainable Chemistry & Engineering, 2014, 2(11): 2536–2543.
[11].HUA Z., LIU H., JIAN W., et al. Electrochemical behavior of neodymium and formation of Mg-Nd alloys in molten chlorides [J]. Acs Sustainable Chemistry & Engineering, 2017, 5(9): 8089–8096.
[12].John R. W. Molten salt electrolysis of rare earth metals from chloride melts with emphasis on neodymium [D]. Columbia: Columbia University, 1992.
[13].Feng L, Guo C T, Tang D X. Relationship between the dissolution behaviours and current efficiencies of La,Ce Pr and Nd in their chloride molten salts [J]. Journal of Alloys and Compounds,1996, 234:186.
[14].Yan Y D,Xu Y L,Zhang M L.Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl KCl molten salt[J]. Journal of Nuclear Materials, 2013,433:159.
[15].NOVOSELOVA A, SMOLENSK V. Electrochemical behavior of neodymium compounds in molten chlorides[J]. Electrochimica Acta,2013,87:657.
[16].Yamana H, Park B G, Shirai O, et al . Electrochemically produced divalent neodymium in chloride melt[J]. Journal of Alloys and Compounds, 2007,408: 70.
[17].UEHARA A, FUKASAWA K, NAGAI T, et al. Separation of Nd metal by using disproportionation reaction of Nd(II) in molten chlorides [J]. Journal of Nuclear Materials, 2011, 414(2): 336.
[18].雷伟凯,曾庆文,胡贤君,等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程,2017,8(5):7-12.
[19].Hao Tang, Batric Pesic b. Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl-KCl eutectic salt[J]. Electrochimica Acta, 2014,119, 120-130.
[20].王川,陈晓明,何佩鑫,等.可逆,准可逆和不可逆表面反应循环伏安法的数字模拟[J]. 高等学校化学学报,1991,7(12):875-878.
[21].Tang H , Pesic B . Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl–KCl eutectic salts on Mo substrate[J]. Journal of Nuclear Materials, 2015, 458:37-44.
[22].陆庆桃,余仲兴.氧化钕电解的阴极过程及钕的溶解行为[J].上海有色金属, 1991, 012(004):1-7.

相似文献/References:

[1]肖勇.氢氟酸分离-EDTA容量法测定钕铁硼废料中稀土总量[J].有色金属科学与工程,2007,(01):40.
 XIAO Yong.Hydrofluoric Acid Separating-EDTA Capacity Measuring of Total RareEarth Content in Neodymium-iron-boron Waste Material[J].,2007,(05):40.
[2]吴继平,邓庚凤,邓亮亮,等.从钕铁硼废料中提取稀土工艺研究[J].有色金属科学与工程,2016,(01):119.[doi:10.13264/j.cnki.ysjskx.2016.01.022]
 WU Jiping,DENG Gengfeng,DENG Liangliang,et al.Rare eEarth recovery from NdFeB magnet scrap[J].,2016,(05):119.[doi:10.13264/j.cnki.ysjskx.2016.01.022]
[3]吴继平,邓庚凤,邓亮亮,等.从钕铁硼废料中提取稀土工艺研究[J].有色金属科学与工程,2016,(05预):215.
 WU Ji-ping,DENG Geng-feng,DENG Liang-liang,et al.Study on Rare Earth Recovery from NdFeB magnet scrap[J].,2016,(05):215.
[4]吴继平,邓庚凤*,邓亮亮,等.自然氧化预处理钕铁硼废料浸出过程研究[J].有色金属科学与工程,2017,(02预):91.
 WU Jiping,DENG Gengfeng*,DENG Liangliang,et al.Study on NdFeB magnet scrap pretreated by air oxidation and its leaching process[J].,2017,(05):91.
[5]邓庚凤,吴继平,邓亮亮,等.自然氧化预处理钕铁硼废料浸出过程[J].有色金属科学与工程,2017,(02):119.[doi:10.13264/j.cnki.ysjskx.2017.02.020]
 DENG Gengfeng,WU Jiping,DENG Liangliang,et al.NdFeB magnet scrap pretreated by air oxidation and its leaching process[J].,2017,(05):119.[doi:10.13264/j.cnki.ysjskx.2017.02.020]
[6]付利雯a,汪金良a,b,等.钕铁硼废料资源化回收利用研究进展[J].有色金属科学与工程,2020,(01):7.
 FU Liwen a,WANG Jinliang a,b,et al.Research progress on resource recovery and utilization of NdFeB waste materials[J].,2020,(05):7.
[7]付利雯a,汪金良a,b,等.钕铁硼废料资源化回收利用研究进展[J].有色金属科学与工程,2020,(01):92.[doi:10.13264/j.cnki.ysjskx.2020.01.015]
 FU Liwena,WANG Jinlianga,b,et al.Research progress on the recycling and utilization of Nd-Fe-B wastes[J].,2020,(05):92.[doi:10.13264/j.cnki.ysjskx.2020.01.015]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(51664022)收稿日期: 2020-8-16;
更新日期/Last Update: 2020-09-18